Vol. 21
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-11-03
Effect of Inhomogeneous Plasma Density on the Reflectivity in One Dimensional Plasma Photonic Crystal
By
Progress In Electromagnetics Research M, Vol. 21, 211-222, 2011
Abstract
The dependence of reflectivity on inhomogeneous plasma density for one dimensional plasma photonic crystal is presented. The exponential varying and linear varying plasma density profiles have been chosen in such a way that the volume average permittivity remains constant. The transfer matrix method is used to derive the dispersion relation and reflectivity of the proposed structures by employing the continuity conditions of electric fields and its derivatives on the interface. The exponential varying plasma density profile gives high reflectivity than the linear varying plasma density profile in all considered cases. Also the exponential varying plasma density profile shows perfect reflection in considered volume average permittivity. This profile may be used in sensor applications or in plasma functional devices.
Citation
Surendra Prasad, Vivek Singh, and Abhay Kumar Singh, "Effect of Inhomogeneous Plasma Density on the Reflectivity in One Dimensional Plasma Photonic Crystal," Progress In Electromagnetics Research M, Vol. 21, 211-222, 2011.
doi:10.2528/PIERM11091702
References

1. Faith, J., S. P. Kuo, and J. Huang, "Frequency downshifting and trapping of an electromagnetic wave by a rapidly created spatially periodic plasma," Phys. Rev. E, Vol. 55, 1843-1851, 1997.
doi:10.1103/PhysRevE.55.1843

2. Kuo, S. P. and J. Faith, "Interaction of an electromagnetic wave with a rapidly created spatially periodic plasma," Physical Review E, Vol. 56, No. 2, 2143-2450, 1997.
doi:10.1103/PhysRevE.56.2143

3. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one-dimensional Plasma photonic crystals," J. Plasma Fusion Res., Vol. 80, No. 2, 89-90, 2004.
doi:10.1585/jspf.80.89

4. Laxmi, S. and P. Mahto, "Photonic band gap effect in one-dimensional plasma dielectric photonic crystals," Solid State Commun., Vol. 138, 160-164, 2006.

5. Bin, G., "Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal," Physics of Plasma, Vol. 16, 043508-1-043508-6, 2009.

6. Sakai, O., T. Sakaguchi, and K. Tachibana, "Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves," J. Appl. Phys., Vol. 101, 073304-1-073304-9, 2007.

7. Prasad, S., V. Singh, and A. K. Singh, "Modal propagation characteristics of EM waves in ternary one-dimensional plasma photonic crystals," Optik, Vol. 121, 1520-1528, 2010.
doi:10.1016/j.ijleo.2009.02.024

8. Song, L., W. Hong, and N. Yuan, "Finite-difference time-domain analysis of unmagnetized plasma photonic crystals," Int. J. Inf. Millimeter Waves, Vol. 27, No. 3, 403-423, 2006.

9. Hojo, H. and A. Mase, "Electromagnetic wave transmittance characteristics in one-dimensional plasma photonic crystals," J. Plasma Fusion Res. Series, Vol. 8, 477-479, 2009.

10. Song, L., Z. Shuangying, and L. Sanqiu, "A study of properties of the photonic band gap of unmagnetized plasma photonic crystal," Plasma Science and Technology, Vol. 11, No. 1, 14-17, 2009.
doi:10.1088/1009-0630/11/1/03

11. Qi, L., Z. Yang, X. Gao, F. Lan and Z. Shi, "Transmission characteristics of electromagnetic waves in plasma photonic crystal by a novel FDTD method," PIERS Proceedings, 1044-1048, Beijing, China, Mar. 23-27, 2009.

12. Sakai, O., T. Sakaguchi, and K. Tachibana, "Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas," Appl. Phys. Lett., Vol. 87, 241505-1-241505-3, 2005.

13. Sakai, O., T. Sakaguchi, Y. Ito, and K. Tachibana, "Interaction and control of millimetre-waves with microplasma arrays," Plasma Phys. Contr. Fusion, Vol. 47, B617-B627, 2005.
doi:10.1088/0741-3335/47/12B/S45

14. Sakaguchi, T., O. Sakai, and K. Tachibana, "Photonic bands in two dimensional microplasma arrays. II. Band gaps observed in millimeter and subterahertz ranges," Journal of Applied Physics, Vol. 101, 073305-1-073305-7, 2007.

15. Fan, W. and L. Dong, "Tunable one-dimensional plasma photonic crystals in dielectric barrier discharge," Physics of Plasmas, Vol. 17, 073506-1-073506-6, 2010.
doi:10.1063/1.3503625

16. Dong, L., H. Xiao, W. Fan, H. Zhao, and H. Yue, "A plasma photonic crystal with tunable lattice constant," IEEE Transactions on Plasma Science, Vol. 38, No. 9, 2486-2490, 2010.
doi:10.1109/TPS.2010.2055586

17. Qi, L., Z. Yang, F. Lan, X. Gao, and Z. Shi, "Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals," Physics of Plasmas, Vol. 17, 042501-042508, 2010.
doi:10.1063/1.3360296

18. Kong, X.-K., S.-B. Liu, H.-F. Zhang, and C.-Z. Li, "A novel tunable filter featuring defect mode of the TE wave from one- dimensional photonic crystals doped by magnetized plasma," Physics of Plasmas, Vol. 17, 103506-1-103506-5, 2010.

19. Zhang, H.-F., M. Li, and S.-B. Liu, "Study of periodic band gap structure of the magnetized plasma photonic crystals," Optoelectronics Letters, Vol. 5, No. 2, 112-116, 2009.
doi:10.1007/s11801-009-8165-0

20. Yang, L., Y. Xie, P. Yu, and G. Wang, "Electromagnetic bandgap analysis of 1D magnetized PPC with oblique incidence," Progress In Electromagnetics Research M, Vol. 12, 39-50, 2010.
doi:10.2528/PIERM10012211

21. Swanson, D. G., Plasma Waves, 2nd Edition, Ch. 6, 271, IOP Publishing Ltd., USA, 2003.

22. Shiveshwari, L., "Some new band characteristics in one-dimensional plasma dielectric photonic crystals," Plasma Science and Technology, Vol. 13, No. 4, 392-396, 2011.
doi:10.1088/1009-0630/13/4/02

23. Chen, J.-B., Y. Shen, W.-X. Zhou, Y.-X. Zheng, H.-B. Zhao, and L.-Y. Chen, "Comparison study of the band-gap structure of a 1D- photonic crystal by using TMM and FDTD analyses," Journal of the Korean Physical Society, Vol. 58, No. 4, 1014-1020, 2011.
doi:10.3938/jkps.58.1014

24. Kruer, W. L., The Physics of Laser Plasma Interactions, Ch. 3, 32, Addison-Wesley Publishing Company, Inc., 1988.

25. Ginburg, V. L., The Properties of Electromagnetic Waves in Plasmas, Pergamon Press, 2nd Edition, Ch. 4, 193, 1964.

26. Chen, F. F., Introduction to Plasma Physics and Controlled Fusion, 2nd Edition, Ch. 4, Plenum Press, 1974.

27. Yeh, P., A. Yariv, and C. S. Hong, "Electromagnetic propagation in periodic stratified media I. General theory," J. Opt. Soc. Am., Vol. 67, No. 4, 423-438, 1977.
doi:10.1364/JOSA.67.000423