1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2063, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
2. John, S., "Strong localization of photons in certain disordered dielectric superlattice," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
3. Goncharov, A. A., A. V. Zatuagan, and I. M. Protsenko, "Focusing and control of multiaperture ion beams by plasma lenses," IEEE Trans. on Plasma Sci., Vol. 21, No. 5, 578-581, 1993.
doi:10.1109/27.249646 Google Scholar
4. Dwyer, J. G., D. Murphy, J. Perin, R. Pechacek, and M. Raleigh, "On the feasibility of using an atmospheric discharge plasma as an RF antenna," IEEE Trans. on Antennas and Propag., Vol. 32, No. 2, 141-146, 1984.
doi:10.1109/TAP.1984.1143275 Google Scholar
5. Vidmar, R. J., "On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers," IEEE Trans. on Plasma Sci., Vol. 18, No. 4, 733-741, 1990.
doi:10.1109/27.57528 Google Scholar
6. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals," J. Plasma Fusion Res., Vol. 80, 89-90, 2004.
doi:10.1585/jspf.80.89 Google Scholar
7. Shiveshwari, L. and P. Mahto, "Photonic band gap effect in one-dimensional plasma dielectric photonic crystals," Solid State Commun., Vol. 138, 160-164, 2006.
doi:10.1016/j.ssc.2005.11.024 Google Scholar
8. Sakai, O., T. Sakaguchi, and K. Tachibana, "Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas," Appl. Phys. Lett., Vol. 87, 241505-241505-3, 2005.
doi:10.1063/1.2147709 Google Scholar
9. Song, L., Z. Shuangying, and L. Sanqiu, "A study of properties of the photonic band gap of unmagnetized plasma photonic crystal," Plasma Science and Technology, Vol. 11, No. 1, 14-17, 2009.
doi:10.1088/1009-0630/11/1/03 Google Scholar
10. Qi, L. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.
doi:10.2528/PIER09022605 Google Scholar
11. Qi, L., Z. Yang, F. Lan, X. Gao, and Z. Shi, "Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals," Physics of Plasmas, Vol. 17, 042501, 2010.
doi:10.1063/1.3360296 Google Scholar
12. Guo, B., "Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal," Physics of Plasmas, Vol. 16, 043508-043508-6, 2009.
doi:10.1063/1.3116642 Google Scholar
13. Prasad, S., V. Singh, and A. K. Singh, "Modal propagation characteristics of EM waves in ternary one-dimensional plasma photonic crystals," Optik, International Journal for Light and Electron Optics, Vol. 121, No. 16, 1520-1528, 2010.=.
doi:10.1016/j.ijleo.2009.02.024 Google Scholar
14. Prasad, S., V. Singh, and A. K. Singh, "A comparative study of dispersion relation of EM waves in ternary one-dimensional plasma photonic crystals having two different structures," Optik, International Journal for Light and Electron Optics, Vol. 122, 1279-1283, 2011.
doi:10.1016/j.ijleo.2010.08.015 Google Scholar
15. Nino, M., T. Hirai, R. Watanabe, and , "The functionally gradient materials," J. Jpn. Soc. Compos. Mater., Vol. 13, 257-260, 1987.
doi:10.6089/jscm.13.257 Google Scholar
16. Suresh, S. and A. Mortensen, "Fundamentals of functionally graded materials," IOM Communications Ltd., The Institute of Materials, London, 1998. Google Scholar
17. Hui, P. M., X. Zhang, A. J. Markworth, and D. Stroud, "Thermal conductivity of graded composites: Numerical simulations and an e®ective medium approximation," J. Mater. Science, Vol. 34, 5497-5503, 1999.
doi:10.1023/A:1004760427981 Google Scholar
18. Huang, J. P. and K. W. Yu, "Effective nonlinear optical properties of graded metal-dielectric composite films of anisotropic particles," J. Opt. Soc. Am. B, Vol. 22, 1640-1647, 2005.
doi:10.1364/JOSAB.22.001640 Google Scholar
19. Gao, L., J. P. Huang, and K. W. Yu, "Effective nonlinear optical properties of composite media of graded spherical particles," Phys. Rev. B, Vol. 69, 075105-075113, 2004.
doi:10.1103/PhysRevB.69.075105 Google Scholar
20. Sang, Z. F. and Z. Y. Li, "Optical properties of one-dimensional photonic crystals containing graded materials," Optics Communications, Vol. 259, 174-178, 2006.
doi:10.1016/j.optcom.2005.08.042 Google Scholar
21. Sang, Z. F. and Z. Y. Li, "Properties of defect modes in one-dimensional photonic crystals containing a graded defect layer," Optics Communications, Vol. 273, 162-166, 2007.
doi:10.1016/j.optcom.2006.12.008 Google Scholar
22. Prasad, S., V. Singh, and A. K. Singh, "Modeling of a filter from one-dimensional plasma photonic crystal having exponentially graded material in submillimeter range," Journal of Optics Research, Vol. 12, No. 3-4, Article 2, 2011. Google Scholar
23. Prasad, S., V. Singh, and A. K. Singh, "Effect of inhomogeneous plasma density on the re°ectivity in one dimensional plasma photonic crystal," Progress In Electromagnetics Research M, Vol. 21, 211-222, 2011.
doi:10.2528/PIERM11091702 Google Scholar
24. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Applied Mathematics Series, 55, National Bureau of Standard, 1964.
25. Yeh, P., "Optical Waves in Layered Media," Wiley-Interscience, 2005. Google Scholar