Vol. 24
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-04-19
Optimal Synthesis of Thinned Arrays Using Biogeography Based Optimization
By
Progress In Electromagnetics Research M, Vol. 24, 141-155, 2012
Abstract
Thinning of large arrays in order to produce low side lobes is a difficult task. Conventional gradient methods often stuck in local minima and hence are not capable of obtaining optimum solutions. As a result, global optimization methods are required to thin large antenna arrays. In this paper, a global evolutionary method, Biogeography based optimization (BBO) is introduced as a new tool for thinning large linear and planar antenna arrays of uniformly excited isotropic antennas. The aim is to synthesize linear arrays so as to yield the maximum relative sidelobe level (SLL) equal to or below a desired level while also keeping the percentage of thinning equal to or above the desired level. The results obtained by BBO are compared with the previous published results of Genetic Algorithm (GA), Ant Colony Optimization (ACO), Immunity Genetic Algorithm (IGA) and Binary Particle Swarm Optimization (BPSO).
Citation
Urvinder Singh Tara Singh Kamal , "Optimal Synthesis of Thinned Arrays Using Biogeography Based Optimization," Progress In Electromagnetics Research M, Vol. 24, 141-155, 2012.
doi:10.2528/PIERM12020502
http://www.jpier.org/PIERM/pier.php?paper=12020502
References

1. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propagat., Vol. 42, No. 7, 993-999, 1994.
doi:10.1109/8.299602

2. Weile, D. S. and E. Michielssen, "Integer coded Pareto genetic algorithm design of constrained antenna arrays," Electron. Lett., Vol. 32, No. 9, 1744-1745, 1996.
doi:10.1049/el:19961174

3. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, Apr. 1997.
doi:10.1109/74.632992

4. Mahanti, G. K., N. N. Pathak, and P. K. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

5. Hamici, Z. M. and T. H. Ismail, "Optimization of thinned arrays using stochastic immunity genetic algorithm," IEEE International Symposium on Signal Processing and Information Technology, 378-383, 2009.

6. Fernandez-Delgado, M., , J. A. Rodriguez-Gonzalez, R. Iglesias, S. Barro, and F. J. Ares-Pena, "Fast array thinning using global optimization methods," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2259-2271, 2010.
doi:10.1163/156939310793699136

7. Jain, R. and G. S. Mani, "Dynamic thinning of antenna array using genetic algorithm," Progress In Electromagnetics Research B, Vol. 32, 1-20, 2011.
doi:10.2528/PIERB11042203

8. Zhang, L., Y.-C. Jiao, B. Chen, and H. Li, "Orthogonal genetic algorithm for planar thinned array designs," International Journal of Antennas and Propagation, Vol. 2012, 7, Article ID 319037, 2012.

9. Jin, N. B. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single objective and multiobjective implementations," IEEE Trans. Antennas Propagat., Vol. 55, 556-567, 2007.
doi:10.1109/TAP.2007.891552

10. Rodriguez, J. A., F. Ares, and E. Moreno, "Linear array pattern synthesis optimizing array element excitations using the simulated annealing technique," Microwave Opt. Technol. Lett., Vol. 23, No. 4, 224-226, 1999.
doi:10.1002/(SICI)1098-2760(19991120)23:4<224::AID-MOP10>3.0.CO;2-M

11. Chen, Y., S. Yang, and Z. Nie, "Synthesis of uniform amplitude thinned linear phased arrays using the differential evolution algorithm," Electromagnetics, Vol. 27, No. 5, 2007.
doi:10.1080/02726340701364233

12. Aksoy, E. and E. Afacan, "Thinned non-uniform amplitude time-modulated linear arrays," IEEE Antennas Wireless Propag. Lett., Vol. 9, 514-517, 2010.
doi:10.1109/LAWP.2010.2051312

13. Quevedo-Teruel, O. and E. Rajo-Iglesias, "Ant colony optimization in thinned array synthesis with minimum sidelobe level," IEEE Antennas Wireless Propag. Lett., Vol. 5, 349-352, 2006.
doi:10.1109/LAWP.2006.880693

14. Razavi, A. and K. Forooraghi, "Thinned arrays using pattern search algorithms," Progress In Electromagnetics Research, Vol. 78, 61-71, 2008.
doi:10.2528/PIER07081501

15. Wang, X.-K., Y.-C. Jiao, and Y. Y. Tan, "Gradual thinning synthesis for linear array based on iterative Fourier techniques," Progress In Electromagnetics Research, Vol. 123, 299-320, 2012.
doi:10.2528/PIER11100903

16. Singh, U., H. Kumar, and T. S. Kamal, "Linear array synthesis using biogeography based optimization," Progress In Electromagnetics Research M, Vol. 11, 25-36, 2010.
doi:10.2528/PIERM09120201

17. Khodier, M. M. and M. Al-Aqeel, "Linear and circular array optimization: A study using particle swarm intelligence," Progress In Electromagnetics Research B, Vol. 15, 347-373, 2009.
doi:10.2528/PIERB09033101

18. Singh, U., H. Kumar, and T. S. Kamal, "Design of Yagi-Uda antenna using biogeography based optimization," IEEE Transactions on Antennas & Propag., Vol. 58, No. 10, 3375-3379, 2010.
doi:10.1109/TAP.2010.2055778

19. Singh, U. and T. S. Kamal, "Design of non-uniform circular antenna arrays using biogeography-based optimization," IET Microwaves, Antennas & Propag., Vol. 5, 1365-1370, 2011.
doi:10.1049/iet-map.2010.0204

20. Rarick, R., D. Simon, F. Villaseca, and B. Vyakaranam, "Biogeography-based optimization and the solution of the power flow problem," IEEE Conference on Systems, Man, and Cybernetics, San Antonio, 1029-1034, TX, Oct. 2009.

21. Savsani, V., R. Rao, and D. Vakharia, "Discrete optimisation of a gear train using biogeography-based optimisation technique," International Journal of Design Engineering, Vol. 2, No. 2, 205-223, 2009.
doi:10.1504/IJDE.2009.028652

22. Singh, P., N. Kaur, and H. Kundra, "Biogeography-based satellite image classification," V. Panchal, International Journal of Computer Science and Information Security, Vol. 6, No. 2, 269-274, 2009.

23. MacArthur, R. and E. Wilson, The Theory of Biogeography, Princeton University Press, 1967.

24. Simon, D., "Biogeography-based optimization," IEEE Trans. Evol. Comput., Vol. 12, No. 6, 702-713, 2008.
doi:10.1109/TEVC.2008.919004