Vol. 24
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-04-12
Convergence Properties of a Diakoptics Method for Electromagnetic Scattering from 3-d Complex Structures
By
Progress In Electromagnetics Research M, Vol. 24, 127-140, 2012
Abstract
Linear embedding via Green's operators (LEGO) is a diakoptics method that employs electromagnetic ``bricks'' to formulate problems of wave scattering from complex structures (e.g., penetrable bodies with inclusions). In its latest version the LEGO integral equations are solved through the Method of Moments combined with adaptive generation of Arnoldi basis functions (ABF) to compress the resulting algebraic system. In this paper we review and discuss the convergence properties of the numerical solution in relation to the number of ABFs. Besides, we address the issue of setting the threshold for stopping the generation of ABFs in conjunction with the adaptive Arnoldi algorithm.
Citation
Vito Lancellotti, and Antonius G. Tijhuis, "Convergence Properties of a Diakoptics Method for Electromagnetic Scattering from 3-d Complex Structures," Progress In Electromagnetics Research M, Vol. 24, 127-140, 2012.
doi:10.2528/PIERM12030805
References

1. Peterson, A. F., S. L. Ray, and R. Mittra, "Computational Methods for Electromagnetics," IEEE Press, 1998.

2. Harrington, R. F., Field Computation by Moment Methods, MacMillan, 1968.

3. Kron, G., "A set of principles to interconnect the solutions of physical systems," Journal of Applied Physics, Vol. 24, No. 8, 965-980, 1953.
doi:10.1063/1.1721447

4. Matekovitz, L., V. A. Laza, and G. Vecchi, "Analysis of large complex structures with the synthetic-functions approach," IEEE Trans. Antennas Propag., Vol. 55, 2509-2521, Sep. 2007.
doi:10.1109/TAP.2007.904073

5. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

6. Li, M.-K. and W. C. Chew, "Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme," IEEE Trans. Antennas Propag., Vol. 56, 2389-2397, Aug. 2008.
doi:10.1109/TAP.2008.926785

7. Xiao, G., J.-F. Mao, and B. Yuan, "A generalized surface integral equation formulation for analysis of complex electromagnetic systems," IEEE Trans. Antennas Propag., Vol. 57, 701-710, Mar. 2009.
doi:10.1109/TAP.2009.2013425

8. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "An eigencurrent approach to the analysis of electrically large 3-D structures using linear embedding via Green's operators," IEEE Trans. Antennas Propag., Vol. 57, 3575-3585, Nov. 2009.

9. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Scattering from large 3-D piecewise homogeneous bodies through linear embedding via Green's operators and Arnoldi basis functions," Progress In Electromagnetics Research, Vol. 103, 305-322, 2010.
doi:10.2528/PIER10032915

10. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Linear embedding via Green's operators and Arnoldi basis functions for analyzing complex structures," 5th European Conference on Antennas and Propagation (EuCAP '11), 3519-3523, Rome, Italy, Apr. 2011.

11. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Wave scattering from random sets of closely spaced objects through linear embedding via Green's operators," Waves in Random and Complex Media, Vol. 21, 434-455, Aug. 2011.
doi:10.1080/17455030.2011.577844

12. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Linear embedding via Green's operators for 3-D scattering from piecewise homogeneous bodies," 12th Int. Conf. on Electromagnetics in Advanced Applications (ICEAA '10), 349-352, invited paper, Sydney, Australia, Sept. 2010.

13. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "A domain decomposition method for solving 3-D complex structures," 13th Int. Conf. on Electromagnetics in Advanced Applications (ICEAA '11), 195-198, invited paper, Turin, Italy, Sept. 2011.

14. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Scattering from a random distribution of numerous bodies with linear embedding via Green's operators," AP/URSI Int. Symp., 650-653, Spokane, Washington, USA, Jul. 2011.

15. Rothwell, E. J. and M. J. Cloud, Electromagnetics,, CRC Press, 2001.
doi:10.1201/9781420058260

16. Kurz, S., O. Rain, and S. Rjasanow, "The adaptive cross-approximation technique for the 3D boundary-element method," IEEE Trans. Magn., Vol. 38, 421-424, Mar. 2002.
doi:10.1109/20.996112

17. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "On the convergence of the eigencurrent expansion method applied to linear embedding via Green's operators (LEGO)," IEEE Trans. Antennas Propag., Vol. 58, 3231-3238, Oct. 2010.