Vol. 28
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-03
Design and Performance of a k U-Band Rotman Lens Beamforming Network for Satellite Systems
By
Progress In Electromagnetics Research M, Vol. 28, 41-55, 2013
Abstract
This paper presents the novel theoretical design, CAD modeling, and performance analysis of a compact and reliable microwave beamforming network (MBFN) which has been developed based on the RF Rotman lens switched-beam steered array for operation in Ku frequency band. The objective of this investigation is to develop a passive beam steering microwave network device intended for the potential suitable use in satellite communications beam scanning electronically scanned arrays. A thorough Ku-band satellite microwave network system has been theoretically designed and simulated along with the analysis of its output RF characteristics. The antenna array feeding network is capable of multi-beams generation and wide-band operation in terms of the true-time-delay (TDD) and low dispersive properties in order to allow simultaneous operation of multiple RF beams. The Rotman lens demonstrates the potential appropriateness in order to develop a high-performance and well-established design for advanced satellite microwave systems, services, and devices.
Citation
Ardavan Rahimian , "Design and Performance of a k U-Band Rotman Lens Beamforming Network for Satellite Systems," Progress In Electromagnetics Research M, Vol. 28, 41-55, 2013.
doi:10.2528/PIERM12111511
http://www.jpier.org/PIERM/pier.php?paper=12111511
References

1. Rotman, W. and R. Turner, "Wide-angle microwave lens for line source applications," IEEE Trans. Antennas Propag., Vol. 11, Nov. 1963.

2. Rahimian, A. and A. Rahimian, "Enhanced RF steerable beam-forming networks based on Butler matrix and Rotman lens for ITS applications," IEEE Region 8 Int. Conf. Computational Technologies in Electrical and Electronics Engineering (SIBIRCON), 567-572, Jul. 2010.

3. Kushwah, R. P. S., P. K. Singhal, and P. C. Sharma, "Design of symmetric bootlace lens with gain analysis at UHF band," Progress In Electromagnetics Research Letters, Vol. 6, 83-89, 2009.
doi:10.2528/PIERL08122905

4. Hall, P. S. and S. J. Vetterlein, "Review of radio frequency beam-forming techniques for scanned and multiple beam antennas," IEE Proc. H, Vol. 137, 293-303, Oct. 1990.

5. Weiss, S., "Low profile arrays with integrated beamformers," Proc. IEEE ICWITS, 1-4, Aug. 2010.

6. Dong, J. and A. I. Zaghloul, "Hybrid ray tracing method for microwave lens simulation," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3786-3796, Oct. 2011.
doi:10.1109/TAP.2011.2163762

7. Singhal, P. K., P. C. Sharma, and R. D. Gupta, "Rotman lens with equal height of array and feed contours," IEEE Trans. Antennas Propag.,, Vol. 51, No. 8, 2048-2056, Aug. 2003.
doi:10.1109/TAP.2003.814742

8. Penney, C., "Rotman lens design and simulation in software [application notes]," IEEE Microwave Mag., Vol. 9, No. 6, 138-139, Dec. 2008.
doi:10.1109/MMM.2008.929774

9. Rahimian, A., "Microwave beamforming networks employing Rotman lenses and cascaded Butler matrices for automotive communications beam scanning electronically steered arrays," Microwaves, Radar and Remote Sensing Symp. (MRRS), 351-354, Aug. 2011.
doi:10.1109/MRRS.2011.6053671

10. Weiss, S., S. Keller, and C. Ly, "Development of simple affordable beamformers for army platforms," GOMACTech | 07 Conf., Mar. 2006.
doi:10.1049/el.2011.3276

11. Zhang, Y. and V. Fusco, "N-way switch based on Rotman lens," Electronics Lett., Vol. 48, No. 5, 270-271, Mar. 2012.
doi:10.1049/iet-map.2011.0379

12. Zhang, Y., S. Christie, V. Fusco, R. Cahill, G. Goussetis, and D. Linton, "Reconfigurable beam forming using phase-aligned Rotman lens," IET Microwaves, Antennas & Propag., Vol. 6, No. 3, 326-330, Feb. 2012.
doi:10.1109/TAP.2009.2039331

13. Lee, W. , J. Kim, C. S. Cho, and Y. J. Yoon, "Beamforming lens antenna on a high resistivity silicon wafer for 60 GHz WPAN," IEEE Trans. Antennas Propag.,, Vol. 58, No. 3, 706-713, Mar. 2010.

14. Simon, P. S., "Analysis and synthesis of Rotman lenses," 22nd AIAA Int. Communications Satellite Systems Conf. Exhibit., May 2004.

15. Rahimian, A., "Microwave beamforming networks for intelligent transportation systems," Intelligent Transportation Systems, 123-142, Ahmed Abdel-Rahim, Ed., InTech, Rijeka, 2012.

16. Maybell, M., "Ray structure method for coupling coefficient analysis of the two dimensional Rotman lens," Proc. Antennas Propag. Society Int. Symp., Vol. 19, 144-147, Jun. 1981.
doi:10.1002/mmce.20543

17. Hussain, M. G. M. and A. S. Alzayed, "Beam-pattern synthesis using slotted Rotman lenses," Intl. J. RF Microwave Computer-Aided Eng., Vol. 21, 570-577, Sep. 2011.

18. Singhal, P. K., R. D. Gupta, and P. C. Sharma, "Recent trends in design and analysis of Rotman-type lens for multiple beamforming," Intl. J. RF Microwave Computer-Aided Eng., Vol. 8, 321-338, Jul. 1998.
doi:10.1109/TAP.2008.927567

19. Cheng, Y. J., W. Hong, K. Wu, Z. Q. Kuai, C. Yu, J. X. Chen, J. Y. Zhou, and H. J. Tang, "Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2504-2513, Aug. 2008.
doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes.