Vol. 38
Latest Volume
All Volumes
PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-03-29
Guided- and Radiated-Wave Characteristics of a Rectangular Patch Antenna Located on a Singly-Curved Surface
By
Progress In Electromagnetics Research C, Vol. 38, 205-216, 2013
Abstract
A modified Schwarz-Christoffel transformation (SCT) is used to obtain guided- and radiated-wave characteristics of a singly-curved rectangular patch antenna. The method is to map a straight channel into an arbitrarily-curved channel. This simplifies the problem to that of a planar rectangular patch antenna. Applying conventional SCT to the problem confronts two difficulties: The region under investigation is elongated, and it has curved boundaries. Therefore, SCT is modified to handle the problem. Input impedance, VSWR and radiation patterns of a conformal patch antenna on a parabolic surface are obtained utilizing the proposed SCT and either numerical or analytical treatment of a planar patch antenna, and the results are verified. Effect of parabolic curvature on the above-mentioned characteristics is investigated.
Citation
Keyhan Hosseini, and Zahra Atlasbaf, "Guided- and Radiated-Wave Characteristics of a Rectangular Patch Antenna Located on a Singly-Curved Surface," Progress In Electromagnetics Research C, Vol. 38, 205-216, 2013.
doi:10.2528/PIERC12111705
References

1. He, , M. and X. Xu, "Closed-form solutions for analysis of cylindrically conformal microstrip antennas with arbitrary radii," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 518-525, Jan. 2005.
doi:10.1109/TAP.2004.838772

2. Amendola, G., "Application of Mathieu functions to the analysis of radiators conformal to elliptic cylindrical surfaces," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 8, 1103-1120, 1999.
doi:10.1163/156939399X01267

3. Yuan, N., X. C. Nie, Y. B. Gan, T. S. Yeo, and L. W. Li, "Accurate analysis of conformal antenna arrays with finite and curved frequency selective surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1745-1760, 2012.

4. Dib, N. and T. Weller, "Finite difference time domain analysis of cylindrical coplanar waveguide circuits," Journal of Electromagnetic Waves and Applications, Vol. 87, No. 9, 1083-1094, 2000.

5. Revuelto, I. G., L. E. G. Castillo, F. S. Adana, M. S. Palma, and T. K. Sarkar, "A novel hybrid FEM high-frequency technique for the analysis of scattering and radiation problems," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 7, 939-956, 2004.
doi:10.1163/156939304323105763

6. Arakaki, D. Y., D. H. Werner, and R. Mittra, "A technique for analyzing radiation from conformal antennas mounted on arbitrarily-shaped conducting bodies," Proc. IEEE International Symp. on Antennas and Propag., Vol. 1, 10-13, 2000.

7. Macon, C. A., K. D. Trott, and L. C. Kempel, "A practical approach to modeling doubly curved conformal microstrip antennas," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 8, 1161-1163, 2003.
doi:10.1163/156939303322519793

8. Hosseini, K. and Z. Atlasbaf, "Design of a cylindrical CRLH leaky-wave antenna using conformal mapping," IEEE International Symp. on Telecommun. (IST2012), Tehran, 2012.

9. Kadi, Z. and A. Rockwood, "Conformal maps defined about polynomial curves," Computer Aided Geometric Design, Vol. 15, 323-337, 1998.
doi:10.1016/S0167-8396(97)00035-6

10. Driscoll, T. A., "A non-overlapping domain decomposition method for Symm's equation for conformal mapping," Society for Industrial and Applied Mathematics, Vol. 36, No. 3, 922-934, 1999.

11. Howell, L. H., "Computation of conformal maps by modified Schwarz-Christoffel transformation,", Ph.D. Dissertation, Dept. Math., Massachussets Inst. of Technology, MA, 1990.

12. Davis, R. T., "Numerical methods for coordinate generation based on Schwarz-Christoffel transformation," AIAA Computational Fluid Dynamics Conference, Vol. A79-45251, 180-194, 1979.

13. Akan, V. and E. Yazgan, "Quasi-static solutions of multilayer elliptical, cylindrical coplanar striplines and multilayer coplanar striplines with finite dielectric dimensions-asymmetrical case," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 3681-3686, Dec. 2005.

14. Nguyen, C., Analysis Methods for RF, Microwave, and Millimeter-wave Planar Transmission-line Structures, Chapter 5, John Wiley & Sons, New York, 2000.
doi:10.1002/0471200670

15. Brown, J. W. and R. V. Churchill, Complex Variables and Applications, 8th Ed., Chapter 11, Mc-Graw Hill, New York, 2004.

16. Balanis, C. A., Antenna Theory, Analysis and Design, 3rd Ed., Chapter 14, John Wiley, New Jersey, 2005.