Vol. 30
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-04-12
Multi-Output Least Square Support Vector Machine for the Reconstruction of Perfect Electric Conductor Below Rough Surface
By
Progress In Electromagnetics Research M, Vol. 30, 117-128, 2013
Abstract
To save the computation time and improve the accuracy of reconstruction results by support vector machine (SVM), a multi-output least square SVM (LS-SVM) algorithm is proposed to reconstruct the position of a 2-D perfect electric conductor cylinder below a rough surface. Firstly, the scattered electromagnetic field at a number of observation positions is calculated by the method of moment to generate the training and testing data. Then the multi-output LS-SVM is trained to reconstruct the coordinate of the object center. Numerical results show that this approach is accurate and efficient even with some additive Gaussian noise.
Citation
Ji-Liang Cai Chuang-Ming Tong Wei-Jie Ji , "Multi-Output Least Square Support Vector Machine for the Reconstruction of Perfect Electric Conductor Below Rough Surface," Progress In Electromagnetics Research M, Vol. 30, 117-128, 2013.
doi:10.2528/PIERM12121503
http://www.jpier.org/PIERM/pier.php?paper=12121503
References

1. Bermani, E., S. Caorsi, and M. Raffetto, "An inverse scattering approach based on a neural network technique for the detection of dielectric cylinders buried in a lossy half space," Progress In Electromagnetics Research, Vol. 26, 67-87, 2000.
doi:10.2528/PIER99052001

2. Li, F. H., Q. H. Liu, and L. P. Song, "Three-dimensional reconstruction of objects buried in layered media using born and distorted born iterative methods," IEEE Trans. on Geoscience and Remote Sensing Letters, Vol. 1, No. 2, 107-111, 2004.
doi:10.1109/LGRS.2004.826562

3. Wang, X., C.-F. Wang, and Y.-B. Gan, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
doi:10.2528/PIER02111901

4. Ji, , W. J., , C. M. Tong, and P. W. Yan, "Fast calculation of EM scattering from randomly rough surface with buried PEC target," Chinese Journal of Radio Science, Vol. 24, No. 5, 939-965, 2009.

5. Firoozabadi, R., E. L. Miller, and C. M. Rappaport, "New inverse method for simultaneous reconstruction of object buried beneath rough ground and the ground surface structure using SAMM forward model," Proceedings of SPIE, Vol. 5674, 382-393, 2005.
doi:10.1117/12.587935

6. Cai, J. L., et al., "Inversion of PEC targets below dielectric rough surface based on hybrid multi-phase particle swarm optimization," System Engineering and Electronics, Vol. 34, No. 12, 2433-2437, 2012.

7. Cmielewski, O., H. Tortel, and A. Litman, "A two-step procedure for characterizing obstacles under a rough surface from bistatic measurements," IEEE Trans. on Geoscience and Remote Sensing, Vol. 45, No. 9, 2850-2858, September 2007.
doi:10.1109/TGRS.2007.902289

8. Altuncu, Y., O. Ozdemir, and I. Akduman, "Imaging of dielectric objects buried under an arbitrary rough surface," IEEE International Geoscience and Remote Sensing Symposium, IGARSS, 2954-2957, 2006.

9. Vapnik, V. N., The Nature of Statistical Learning Theory, 2nd Ed., Springer-Verlag, New York, 1995.
doi:10.1007/978-1-4757-2440-0

10. Bermani, E., A. Boni, S. Caorsi, and A. Massa, "An innovative real-time technique for buried object detection," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 4, 927-931, 2003.
doi:10.1109/TGRS.2003.810928

11. Wu, H. B., J. J. Yao, and S. Y. He, "Parameters extraction of the two-dimensional object above or on a rough surface based on the electromagnetic simulation," Journal of Wuhan University, Natural Science Edition, Vol. 55, No. 6, 705-709, 2009.

12. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernal evaluation of SVM based estimation for inverse scattering problems," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801

13. Wang, F. F. and Y. R. Zhang, "The support vector machine for dielectric target detection through a wall," Progress In Electromagnetics Research Letters, Vol. 23, 119-128, 2011.

14. Zhang, Q. H, B. X. Xiao, and G. Q. Zhu, "Inverse scattering by dielectric circular cylinder using support vector machine approach," Microwave and Optical Technology Letters, Vol. 49, No. 2, 372-375, 2007.
doi:10.1002/mop.22131

15. Cai, J. L., C. M. Tong, and W. J. Zhong, "Reconstruction of dielectric cylinder by multi-output least square support vector machine," Cross Straight Quad-region Radio Science and Wireless Technology Conference (CSQRWC), Vol. 1, 160-163, 2011.

16. Platt, J., Fast Training of Support Vector Machines Using Sequential Minimal Optimization, Advances in Kernel Methods-support Vector Learning, MIT Press, Cambridge, MA, 1999.

17. Donelli, , M. and A. Massa, "Computational approach based on a particle swarm optimization for microwave imaging of two dimensional dielectric scatters," IEEE trans. on Microwave Theory and Techniques, Vol. 53, No. 5, 1761-1776, 2005.
doi:10.1109/TMTT.2005.847068