1. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., New York, 2002.
2. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetic, IEEE Press, New York, 1998.
doi:10.1109/9780470544655
3. Zhang, Y. Q. and D. B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603 Google Scholar
4. Harrington, R. F., Field Computation by Moment Methods Malabar, Krieger Publishing Company, Florida, 1983.
5. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
doi:10.2528/PIER07122502 Google Scholar
6. Hano, M., T. Miyamura, and M. Hotta, "Three-dimensional finite element eddy current analysis by using high-order vector elements," Electrical Engineering in Japan, Vol. 147, No. 4, 60-67, 2004.
doi:10.1002/eej.10306 Google Scholar
7. Holmgaard, T. and S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Physical Review B, Vol. 75, 245405, 2007.
doi:10.1103/PhysRevB.75.245405 Google Scholar
8. Politano, A., "Interplay of structural and temperature e®ects on plasmonic excitations at noble-metal interfaces," Philosophical Magazine, Vol. 92, No. 6, 768-778, 2012.
doi:10.1080/14786435.2011.634846 Google Scholar
9. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, No. 17, 8215-8220, 2013.
doi:10.1039/c3nr02027d Google Scholar
10. Politano, A., V. Formoso, and G. Chiarello, "Dispersion and damping of gold surface plasmon," Plasmonics, Vol. 3, 165-170, 2008.
doi:10.1007/s11468-008-9070-2 Google Scholar
11. Politano, A., V. Formoso, and G. Chiarello, "Evidence of composite plasmon{phonon modes in the electronic response of epitaxial graphene," Journal of Physics: Condensed Matter, Vol. 25, 345303, 2013.
doi:10.1088/0953-8984/25/34/345303 Google Scholar
12. Cajan, H., L. Pichon, and C. Marchand, "Finite element method for radiated emissions in EMC analysis," IEEE Transactions on Magnetics, Vol. 36, No. 4, 964-967, 2000.
doi:10.1109/20.877602 Google Scholar
13. An, X. and Z.-Q. Lu, "An efficient finite element-boundary integral method solving electromagnetic scattering problems," Microwave and Optical Technology Letters, Vol. 51, No. 9, 2065-2071, 2009.
doi:10.1002/mop.24538 Google Scholar
14. Wei, X. C., E. P. Li, and Y. J. Zhang, "Efficient solution to the large scattering and radiation problem using the improved finite-element fast multipole method," IEEE Transactions on Magnetics, Vol. 41, No. 5, 1684-1687, 2005.
doi:10.1109/TMAG.2005.846083 Google Scholar
15. Chen, R. S., X. W. Ping, E. K. N. Yung, C. H. Chan, et al. "Application of diagonally perturbed incomplete factorization preconditioned conjugate gradient algorithms for edge finite element analysis of Helmholtz equations," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 5, 1604-1608, 2006.
doi:10.1109/TAP.2006.874358 Google Scholar
16. Chen, X., K. C. Toh, and K. K. Phoon, "A modified SSOR preconditioner for sparse symmetric indefinite linear systems of equations," International Journal for Numerical Methods in Engineering, Vol. 65, No. 6, 785-807, 2006.
doi:10.1002/nme.1461 Google Scholar
17. Ping, X. W. and T. J. Cui, "The factorized sparse approximate inverse preconditioned conjugate gradient algorithm for ¯nite element analysis of scattering problems," Progress In Electromagnetics Research, Vol. 98, 15-31, 2009.
doi:10.2528/PIER09071703 Google Scholar
18. Dyczij-Edlinger, R. and O. Biro, "A joint vector and scalar potential formulation for driven high frequency problems using hybrid edge and nodal finite elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 1, 15-23, 1996.
doi:10.1109/22.481380 Google Scholar
19. Zhu, J., X. W. Ping, R. S. Chen, Z. H. Fan, and D. Z. Ding, "An incomplete factorization preconditioner based on shifted Laplace operators for FEM analysis of microwave structures," Microwave and Optical Technology Letters, Vol. 52, No. 5, 1036-1042, 2010.
doi:10.1002/mop.25111 Google Scholar
20. Teixeira, F. L. and W. C. Chew, "Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves," Microwave and Optical Technology Letters, Vol. 17, No. 4, 231-236, Mar. 1998.
doi:10.1002/(SICI)1098-2760(199803)17:4<231::AID-MOP3>3.0.CO;2-J Google Scholar
21. George, A. and J. W. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice Hall, Englewood Cliffs, NJ, 1981.
22. Sieverding, T. and F. Arndt, "Field theoretical CAD of open or aperture matched T-junction coupled rectangular waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 2, 353-363, 1992.
doi:10.1109/22.120109 Google Scholar
23. Ise, K., K. Inoue, and M. Koshiba, "Three-dimensional finite-element method with edge elements for electromagnetic waveguide discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 8, 1289-1295, 1991.
doi:10.1109/22.85402 Google Scholar