1. Vigier, J. P., "Evidence for nonzero mass photons associated with a vacuum-induced dissipative red-shift mechanism," IEEE Transactions on Plasma Science, Vol. 18, No. 1, 64-72, 1990. Google Scholar
2. Tu, L., J. Luo, and G. T. Gillies, "The mass of the photon," Rep. Prog. Phys., Vol. 68, 77, 2005. Google Scholar
3. Kar, G., M. Sinha, and S. Roy, "Maxwell equations, nonzero photon mass, and conformal metric fluctuation," Int. J. Theor. Phys., Vol. 32, No. 4, 593-607, 1993. Google Scholar
4. Bass, L. and E. Schodinger, "Must the photon mass be zero?," Proc. Roy. Soc. London: Series A, Vol. 232, No. 1188, 1-6, 1955. Google Scholar
5. Dvogeglazov, V. V. and J. L. Quintanar Gonzalez, "A note on the Lorentz transformations for the photon," Found. Phys. Lett., Vol. 19, 195-200, 2011. Google Scholar
6. Proca, A., "Sur la theorie ondulatoire des electrons positifs et negatifs," J. Phys. Radium, Vol. 7, 347-353, 1936. Google Scholar
7. Dvogeglazov, V. V., "The modified Bargmann-Wigner formalism for higher spin fields and relativistic quantum mechanics," Int. J. Mod. Phys. Conf. Ser., Vol. 3, 121-132, 2011. Google Scholar
8. Arbab, A. I., "The analogy between matter and electromagnetic waves," EPL, Vol. 94, 50005, 2011. Google Scholar
9. Arbab, A. I., "Derivation of Dirac, Klein-Gordon, Schrodinger, diffusion and quantum heat transport equations from a universal quantum wave equation," EPL, Vol. 92, 40001, 2010. Google Scholar
10. Armour, R. S., "Spin-1/2 Maxwell field," Found. Phys., Vol. 34, 815-842, 2004. Google Scholar
11. Dvoeglazov, V. V. and J. K. R. Murty Eds., "Fundamental physics: Contemporary thinking," Special Issue of ICFAI Journal of Physics, Vol. 2, No. 2-3, 1-196, 2009. Google Scholar
12. Arbab, A. I., "Complex Maxwell's equations," Chinese Phys. B, Vol. 22, 030301, 2013. Google Scholar
13. Silberstein, L., "Elektromagnetische Grundgleichungen in bivectorieller Behandlung," Ann. d. Phys., Vol. 22, 579, 1907. Google Scholar
14. Majorana, E., "Teoria relativistica di particelle con momento intrinseco arbitrario," Nuovo Cimento, Vol. 9, No. 10, 335-344, 1932. Google Scholar
15. Mignani, R., E. Recami, and M. Bxldo, "About a Dirac-like equation for the photon, according to Ettore Majorana," Nuovo Cimento, Vol. 11, No. 12, 568-572, 1974. Google Scholar
16. Singh, P. and N. Dadhich, "The field equation from Newton's law of motion and absence of magnetic monopole," Int. J. Mod. Phys. A, Vol. 16, 1237-1247, 2001. Google Scholar
17. Arbab, A. I., "Complex Maxwell's equation," Chinese Phys. B, Vol. 22, No. 3, 030301, 2013. Google Scholar
18. Arbab, A. I. and Z. A. Satti, "The generalized Maxwell equations and the prediction of electroscalar wave," Progress in Physics, Vol. 2, 8, 2009. Google Scholar
19. Aharonov, Y. and D. Bohm, "Significance of electromagnetic potentials in the quantum theory," Phys. Rev., Vol. 115, 485-491, 1959. Google Scholar
20. Dirac, P. A. M., "The quantum theory of the electron," Proc. Roy. Soc. London: Series A, Vol. 117, No. 778, 610-624, 1928. Google Scholar
21. Chereshko, V. P., et al. "Enhancement of the longitudinal magnetic moment of the exciton due to its motion," International Journal of Modern Physics B, Vol. 21, No. 08-09, 1350-1357, 2009. Google Scholar
22. Gingras, M. J. P., "Observing monopoles in a magnetic analog of ice," Science, Vol. 326, No. 5951, 375-376, 2007. Google Scholar
23. Cooper, L. N., "Bound electron pairs in a degenerate fermi gas," Phys. Rev., Vol. 104, 1189-1190, 1956. Google Scholar
24. Bardeen, J., L. N. Cooper, and J. R. Schrieffer, "Theory of superconductivity," Phys. Rev., Vol. 108, 1175-1204, 1957. Google Scholar
25. Dirac, P. A. M., "Quantised singularities in the electromagnetic field," Proc. Roy. Soc. London: Series A, Vol. 133, No. 821, 60-72, 1931. Google Scholar
26. Graneau, P., "Longitudinal magnet forces?," J. Appl. Phys., Vol. 55, No. 6, 2598-2600, 1984. Google Scholar