Vol. 36
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-05-21
Modelling and Analysis of Permanent Magnet Electrodynamic Suspension Systems
By
Progress In Electromagnetics Research M, Vol. 36, 77-84, 2014
Abstract
In this paper, an analytical model of permanent magnet electrodynamic suspension systems (PEDSs) is proposed. Horizontal and vertical magnetic fields of a permanent magnet (PM) are affectively approximated by sinusoidal functions. By this means, closed form solutions are obtained for lift and drag forces of PEDS for the first time. The suspension system is modelled by finite element method (FEM). The analytical values of lift and drag forces are compared with the FEM results. Also, the analytical results are evaluated by experimental results. As so, the accuracy of the analytical model is validated by FEM and experimental measurements.
Citation
Hossein Rezaei Sadegh Vaez-Zadeh , "Modelling and Analysis of Permanent Magnet Electrodynamic Suspension Systems," Progress In Electromagnetics Research M, Vol. 36, 77-84, 2014.
doi:10.2528/PIERM14032407
http://www.jpier.org/PIERM/pier.php?paper=14032407
References

1. Impinna, F., J. G. Detoni, N. Amati, and A. Tonoli, "Passive magnetic levitation of rotors on axial electodynamic bearings," IEEE Transactions on Magnetics, Vol. 49, 599-608, 2013.
doi:10.1109/TMAG.2012.2209124

2. Mabrouk, A. E., A. Cheriet, and M. Feliachi, "Fuzzy logic control of electrodynamic levitation devices coupled to dynamic finite volume method analysis," Applied Mathematical Modelling, Vol. 37, 5951-5961, Apr. 15, 2013.
doi:10.1016/j.apm.2012.11.025

3. Paudel, N., J. Bird, S. Paul, and D. Bobba, "A transient 2D model of an electrodynamic wheel moving above a conductive guideway," 2011 IEEE International Electric Machines & Drives Conference (IEMDC), 545-550, 2011.
doi:10.1109/IEMDC.2011.5994657

4. íñiguez, J. and V. Raposo, "Numerical simulation of a simple low-speed model for an electrodynamic levitation system based on a Halbach magnet array," Journal of Magnetism and Magnetic Materials, Vol. 322, 1673-1676, 2010.
doi:10.1016/j.jmmm.2009.04.035

5. Najjar-Khodabakhsh, A., S. Vaez-Zadeh, and A. H. Isfahani, "Finite element analysis and experimental implementation of the cylindrical permanent magnet electrodynamic suspension system," Electromagnetics, Vol. 29, 563-274, Sep. 29, 2009.
doi:10.1080/02726340903167210

6. Najjar-khodabakhsh, A., S. Vaez-Zadeh, and A. Hassanpour Isfahani, "Analysis of a cylindrical passive suspension system using finite element method," Int. Rev. of Elect. Eng. (IREE), Vol. 3, No. 1, 123-128, Jan. 2008.

7. Sakamoto, T., A. R. Eastham, and G. E. Dawson, "Induced currents and forces for the split- guideway electrodynamic levitation system," IEEE Transactions on Magnetics, Vol. 27, 5004-5006, 1991.
doi:10.1109/20.278721

8. Hill, R. J., "Teaching electrodynamic levitation theory," IEEE Transactions on Education, Vol. 33, 346-354, 1990.
doi:10.1109/13.61088

9. Post, R. F. and D. D. Ryutov, "The inductrack: A simpler approach to magnetic levitation," IEEE Transactions on Applied Superconductivity, Vol. 10, 901-904, 2000.
doi:10.1109/77.828377

10. Sugimoto, H. and A. Chiba, "Stability consideration of magnetic suspension in two-axis actively positioned bearingless motor with collocation problem," IEEE Transactions on Industry Applications, Vol. 50, 338-345, 2014.
doi:10.1109/TIA.2013.2271251