1. Kildishev, A. V., A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces," Science, Vol. 339, No. 6125, 2013.
doi:10.1126/science.1232009 Google Scholar
2. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light," Science, Vol. 33, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713 Google Scholar
3. Ni, X., A. V. Kildishev, and V. M. Shalaev, "Metasurface holograms for visible light," Nat. Commun., Vol. 4, Article No. 2807, 2013. Google Scholar
4. Farmahini-Farahani, M., J. Cheng, and H. Mosallaei, "Metasurfaces nanoantennas for light processing," J. Opt. Soc. Am. B, Vol. 30, No. 9, 2365-2370, 2013.
doi:10.1364/JOSAB.30.002365 Google Scholar
5. Zhao, Y. and A. Alu, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Phys. Rev. Lett. B, Vol. 84, 205428, 2011.
doi:10.1103/PhysRevB.84.205428 Google Scholar
6. Yu, N., F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, "A broadband, background-free quarter-wave plate based on plasmonic metasurfaces," Nano Lett., Vol. 12, 6328-6333, 2012.
doi:10.1021/nl303445u Google Scholar
7. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett., Vol. 12, 4932-4936, 2012.
doi:10.1021/nl302516v Google Scholar
8. Lin, J., S. Wu, X. Li, C. Huang, and X. Luo, "Design and numerical analyses of ultrathin plasmonic lens for subwavelength focusing by phase discontinuities of nanoantenna arrays," Appl. Phys. Exp., Vol. 6, 022004, 2013.
doi:10.7567/APEX.6.022004 Google Scholar
9. Ni, X., S. Ishii, A. V. Kildishev, and V. M. Shalaev, "Ultra-thin, planar, Babinet-inverted plasmonic metalenses," Light Sci. Appl., Vol. 2, e72, 2013.
doi:10.1038/lsa.2013.28 Google Scholar
10. Jiang, X.-Y., J.-S. Ye, J.-W. He, X.-K. Wang, D. Hu, S.-F. Feng, Q. Kan, and Y. Zhang, "An ultrathin terahertz lens with axial long focal depth based on metasurfaces," Opt. Exp., Vol. 21, No. 24, 30030-30038, 2013.
doi:10.1364/OE.21.030030 Google Scholar
11. Monticone, F., N. M. Estakhri, and A. Alu, "Full control of nanoscale optical transmission with a composite metascreen," Phys. Rev. Lett., Vol. 110, 203903, 2013.
doi:10.1103/PhysRevLett.110.203903 Google Scholar
12. Pors, A., M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, "Broadband focusing flat mirrors based on plasmonic gradient metasurfaces," Nano Lett., Vol. 13, 829-834, 2013.
doi:10.1021/nl304761m Google Scholar
13. Pu, M., P. Chen, C.Wang, Y.Wang, Z. Zhao, C. Hu, C. Huang, and X. Luo, "Broadband anomalous reflection based on gradient low-Q meta-surface," AIP Adv., Vol. 3, 052136, 2013.
doi:10.1063/1.4809548 Google Scholar
14. Pors, A. and S. I. Bozhevolnyi, "Plasmonic metasurfaces for efficient phase control in reflection," Opt. Exp., Vol. 21, No. 22, 27438-27451, 2013.
doi:10.1364/OE.21.027438 Google Scholar
15. Pfeiffer, C. and A. Grbic, "Metamaterial Huygens surfaces: Tailoring wave fronts with reflectionless sheets," Phys. Rev. Lett., Vol. 110, 197401, 2013.
doi:10.1103/PhysRevLett.110.197401 Google Scholar
16. Pfeiffer, C. and A. Grbic, "Cascaded metasurfaces for complete phase and polarization control," Appl. Phys. Lett., Vol. 102, 231116, 2013.
doi:10.1063/1.4810873 Google Scholar
17. Pfeier, C. and A. Grbic, "Millimeter-wave transmitarrays for wavefront and polarization control," EEE Trans. Microwave Theory Tech., Vol. 61, No. 12, 4407-4417, 2013.
doi:10.1109/TMTT.2013.2287173 Google Scholar
18. Haus, H. A., Waves and Fields of Optoelectronics, Prentice-Hall, 1984.
19. Yeh, P. and C. Gu, Optics of Liquid Crystal Displays, Wiley, 1999.
20. Jylha, L. and A. H. Sihvola, "Tunability of granular ferroelectric dielectric composites," Progress In Electromagnetics Research, Vol. 78, 189-207, 2008.
doi:10.2528/PIER07081502 Google Scholar
21. Kreibig, U. and M. Vollmer, Optical Properties of Metal Clusters, Springer, 1995.
doi:10.1007/978-3-662-09109-8
22. Haeni, J. H., P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, et al. "Room-temperature ferroelectricity in strained SrTiO3," Nature, Vol. 430, 758-761, 2004.
doi:10.1038/nature02773 Google Scholar
23. Jang, H. W., A. Kumar, S. Denev, M. D. Biegalski, P. Maksymovych, et al. "Ferroelectricity in strain-free SrTiO3 thin films," Phys. Rev. Lett., Vol. 104, 197601, 2010.
doi:10.1103/PhysRevLett.104.197601 Google Scholar
24. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic meso structures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
25. Wang, G., D. Moses, A. J. Heeger, H.-M. Zhang, M. Narasimhan, and R. E. Demaray, "Poly(3-hexylthiophene) ¯eld-e®ect transistors with high dielectric constant gate insulator," J. Appl. Phys., Vol. 95, No. 1, 316-322, 2004.
doi:10.1063/1.1630693 Google Scholar
26. Sheen, J., C.-Y. Li, L.-W. Ji, W.-L. Mao, W. Liu, and C.-A. Chen, "Measurements of dielectric properties of TiO2 thin ¯lms at microwave frequencies using an extended cavity perturbation technique," J. Mater. Sci.: Mater. Electron., Vol. 21, 817-821, 2010.
doi:10.1007/s10854-009-9999-8 Google Scholar
27. Chung, B.-K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, Vol. 75, 239-252, 2007.
doi:10.2528/PIER07052801 Google Scholar
28. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2000.
29. Goodman, J. W., Introduction to Fourier Optics, 3rd Edition, Roberts and Company, 2005.