1. Cumming, I. G., et al. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Norwood, 2004.
2. Fornaro, G., G. Franceschetti, and S. Perna, "Motion compensation errors: Effects on the accuracy of airborne SAR images," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 4, 1338-1352, 2005.
doi:10.1109/TAES.2005.1561888 Google Scholar
3. Kirk, Jr., J. C., "Motion compensation for synthetic aperture radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 3, 338-348, 1975.
doi:10.1109/TAES.1975.308083 Google Scholar
4. Franceschetti, G., et al. "SAR sensor trajectory deviations: Fourier domain formulation and extended scene simulation of raw signal," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 9, 2323-2334, 2006.
doi:10.1109/TGRS.2006.873206 Google Scholar
5. Buckreuss, S., "Motion errors in an airborne synthetic aperture radar system," European Transactions on Telecommunications, Vol. 2, No. 6, 655-664, 1991.
doi:10.1002/ett.4460020609 Google Scholar
6. Wu, H. and T. Zwick, "Micro-air-vehicle-borne near-range SAR with motion compensation," Progress In Electromagnetics Research, Vol. 145, 11-18, 2014. Google Scholar
7. Wu, H. and T. Zwick, "Octave division motion compensation algorithm for near-range wide-beam SAR applications," Progress In Electromagnetics Research, Vol. 144, 115-122, 2014.
doi:10.2528/PIER13110802 Google Scholar
8. Long, T., et al. "A DBS Doppler centroid estimation algorithm based on entropy minimization," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 10, 3703-3712, 2011.
doi:10.1109/TGRS.2011.2142316 Google Scholar
9. Zhao, Y., et al. "A method of Doppler frequency rate estimation for millimeter-wave missile-borne SAR," 2012 IEEE 5th Global Symposium on Millimeter Waves (GSMM), 604-607, 2012.
doi:10.1109/GSMM.2012.6314411 Google Scholar
10. Li, Y., et al. "A robust motion error estimation method based on raw data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 7, 2780-2790, 2012.
doi:10.1109/TGRS.2011.2175737 Google Scholar
11. Wei, S.-J. and X.-L. Zhang, "Sparse autofocus recovery for under-sampled linear array SAR 3-D imaging," Progress In Electromagnetics Research, Vol. 140, 43-62, 2013.
doi:10.2528/PIER13020614 Google Scholar
12. Moreira, J. R., "A new method of aircraft motion error extraction from radar raw data for real time motion," IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No. 4, 620, 1990.
doi:10.1109/TGRS.1990.572967 Google Scholar
13. Zhang, L., et al. "A robust motion compensation approach for UAV SAR imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 8, 3202-3218, 2012.
doi:10.1109/TGRS.2011.2180392 Google Scholar
14. De Macedo, K. A. C., R. Scheiber, and A. Moreira, "An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, 3151-3162, 2008.
doi:10.1109/TGRS.2008.924004 Google Scholar
15. Xing, M., et al. "Motion compensation for UAV SAR based on raw radar data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 8, 2870-2883, 2009.
doi:10.1109/TGRS.2009.2015657 Google Scholar
16. Wahl, D., et al. "Phase gradient autofocus-a robust tool for high resolution SAR phase correction," IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 3, 827-835, 1994.
doi:10.1109/7.303752 Google Scholar
17. Isernia, T., et al. "Synthetic aperture radar imaging from phase-corrupted data," IEE Proceedings — Radar, Sonar and Navigation, Vol. 143, No. 4, 268-274, 1996.
doi:10.1049/ip-rsn:19960458 Google Scholar
18. Liu, B. and W. Chang, "Range alignment and motion compensation for missile-borne frequency stepped chirp radar," Progress In Electromagnetics Research, Vol. 136, 523-542, 2013.
doi:10.2528/PIER12110809 Google Scholar
19. Moreira, A. and Y. Huang, "Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 5, 1029-1040, 1994.
doi:10.1109/36.312891 Google Scholar
20. Rodriguez-Cassola, M., et al. "Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 4, 2949-2966, 2011.
doi:10.1109/TAES.2011.6034676 Google Scholar
21. Prats, P., et al. "Comparison of topography- and aperture-dependent motion compensation algorithms for airborne SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 3, 349-353, 2007.
doi:10.1109/LGRS.2007.895712 Google Scholar
22. Zamparelli, V., S. Perna, and G. Fornaro, "An improved topography and aperture dependent motion compensation algorithm," 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 5805-5808, 2012.
doi:10.1109/IGARSS.2012.6352290 Google Scholar
23. De Macedo, K. A. C. and R. Scheiber, "Precise topography- and aperture-dependent motion compensation for airborne SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 2, 172-176, 2005.
doi:10.1109/LGRS.2004.842465 Google Scholar
24. Sun, G., et al. "Focus improvement of highly squinted data based on azimuth nonlinear scaling," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 6, 2308-2322, 2011.
doi:10.1109/TGRS.2010.2102040 Google Scholar
25. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011. Google Scholar
26. Zhu, D., Y. Li, and Z. Zhu, "A keystone transform without interpolation for SAR ground movingtarget imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, 18-22, 2007.
doi:10.1109/LGRS.2006.882147 Google Scholar
27. Franceschitti, G. and R. Lanari, Synthetic Aperture Radar Processing, CRC Press, 1999.
28. Fornaro, G., "Trajectory deviations in airborne SAR: Analysis and compensation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 3, 997-1009, 1999.
doi:10.1109/7.784069 Google Scholar
29. Tsunoda, S. I., et al. "Lynx: A high-resolution synthetic aperture radar," International Society for Optics and Photonics, AeroSense’99, 1999. Google Scholar