1. Von Arx, J. A. and K. Najafi, "A wireless single-chip telemetry-powered neural stimulation system," 1999 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, ISSCC, 214-215, 1999.
2. Khaleghi, A. and I. Balasingham, "On the ultra wideband propagation channel characterizations of the biomedical implants," IEEE 69th Vehicular Technology Conference, VTC Spring 2009, 1-4, 2009.
doi:10.1109/VETECS.2009.5073740
3. Gupta, S. K. S., S. Lalwani, Y. Prakash, E. Elsharawy, and L. Schwiebert, "Towards a propagation model for wireless biomedical applications," IEEE International Conference on Communications, ICC’ 03, Vol. 3, 1993-1997, 2003.
doi:10.1109/ICC.2003.1203948
4. Khaleghi, A., R. Chavez-Santiago, and I. Balasingham, "Ultra-wideband statistical propagation channel model for implant sensors in the human chest," IET Microwaves, Antennas & Propagation, Vol. 5, 1805-1812, 2011.
doi:10.1049/iet-map.2010.0537
5. Wang, Q., K. Masami, and J. Wang, "Channel modeling and BER performance for wearable and implant UWB body area links on chest," IEEE International Conference on Ultra-Wideband, ICUWB 2009, 316-320, 2009.
doi:10.1109/ICUWB.2009.5288734
6. Støa, S., R. Chavez-Santiago, and I. Balasingham, "An ultra wideband communication channel model for the human abdominal region," 2010 IEEE GLOBECOM Workshops (GC Wkshps), 246-250, 2010.
doi:10.1109/GLOCOMW.2010.5700319
7. Khaleghi, A., R. Chavez-Santiago, and . Balasingham, "An improved ultra wideband channel model including the frequency-dependent attenuation for in-body communications," 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1631-1634, 2012.
doi:10.1109/EMBC.2012.6346258
8. Sayrafian-Pour, K., W.-B. Yang, J. Hagedorn, J. Terrill, and K. Y. Yazdandoost, "A statistical path loss model for medical implant communication channels," 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, 2995-2999, 2009.
doi:10.1109/PIMRC.2009.5449869
9. Shi, J. and J. Wang, "Channel characterization and diversity feasibility for in-body to on-body communication using low-band UWB signals," 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), 1-4, 2010.
doi:10.1109/ISABEL.2010.5702784
10. De Santis, V. and M. Feliziani, "Intra-body channel characterization of medical implant devices," EMC Europe 2011 York, 816-819, 2011.
11. Alomainy, A., Y. Hao, Y. Yuan, and Y. Liu, "Modelling and characterisation of radio propagation from wireless implants at different frequencies," The 9th European Conference on Wireless Technology, 119-122, 2006.
doi:10.1109/ECWT.2006.280449
12. Manteghi, M. and A. Ibraheem, "On the study of the near-fields of electric and magnetic small antennas in lossy media," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1-6, 6491-6495, Dec. 2014.
doi:10.1109/TAP.2014.2359499
13. Manteghi, M., "Electrically coupled loop antenna as a dual for the planar inverted-F antenna," Microwave and Optical Technology Letters, Vol. 55, 1409-1412, 2013.
doi:10.1002/mop.27553
14. Ibraheem, A. and M. Manteghi, "Performance of an implanted electrically coupled loop antenna inside human body," Progress In Electromagnetics Research, Vol. 145, 195-202, 2014.
doi:10.2528/PIER14022005
15., , Online: http://transition.fcc.gov/oet/rfsafety/dielectric.html.
16. Human exposure to electromagnetic fields, high frequency (10 kHz to 300 GHz), , E. R. Committee, 1995.
17. In the matter of guidelines for evaluating the environmental effects of radiofrequency radiation, , US Federal Communications Commission, 1996.
18. Kurup, D., W. Joseph, G. Vermeeren, and L. Martens, "In-body path loss model for homogeneous human tissues," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, 556-564, 2012.
doi:10.1109/TEMC.2011.2164803