1. Al-Hafid, H. T., S. C. Gupta, and M. Ibrahim, "Propagation of microwaves under adverse sand storm conditions of Iraq," Proc. North American Radio Science Meeting, URSI F.5, AP-S, 274, 1980. Google Scholar
2. Ansari, A. J. and B. G. Evans, "Microwave propagation in sand and dust storms," Proc. Inst. Electr. Eng., Vol. 129, 315-322, 1982. Google Scholar
3. Bashir, S. O., "Electromagnetic scattering computation methods for very small particles: Part II," Intern. Conf. on Modelling and Simulation, Published in MS Journal, Vol. 9, Nos. 1-3, 2008. Google Scholar
4. Bashir, S. O., "Statistical modelling of propagation parameters through sand/dust storms at microwave frequencies," IEEE Intern. Conf. in Antennas, Propagation and Systems, Johor Bahru, Malaysia, 2009. Google Scholar
5. Bashir, S. O., A. W. Dissanyake, and N. J. McEwan, "Prediction of forward scattering and cross polarisation due to dry and moist haboob and sand dust storms in sudan in the 9.4GHz band," International Telecommunication Union Journal, Vol. 47, VII-Geneva, 1980. Google Scholar
6. Bashir, S. O., A. A. Musa, A. A. Hassan, and O. O. Khalifa, "Electromagnetic scattering computation methods for very small spheroidal dust particles: Theory and applications," Middle-East Journal of Scientific Research (Mathematical Applications in Engineering), Vol. 13, No. 13, 38-42, 2013. Google Scholar
7. Chen, X., "Observe the influence of sand dust storm on radio communication in Gulf War," Electric Wave Antenna, Vol. 6, No. 2, 1991. Google Scholar
8. Chen, H. Y. and C. Ku, "Microwave and millimeter wave attenuation in sand and dust storms," IEEE International Conference on Microwave, Radar and Wireless Communication, 527-532, Warsaw, Poland, 2012. Google Scholar
9. Dong, Q., J. D. Xu, Y. L. Li, H. Zhang, and M. J. Wang, "Calculation of microwave attenuation effect due to charged sand particles," J. Infrared Milli. Terahz. Waves, Vol. 32, 55-63, 2011.
doi:10.1007/s10762-010-9745-6 Google Scholar
10. Dong, Q., J. Xu, Y. Li, and M. Wang, "Microwave propagation in charged sand particles," 2010 9th International Symposium on Antennas Propagation and EM Theory (ISAPE), 379-382, 2010. Google Scholar
11. Dong, X. Y. and H. Y. Chen, "Microwave and millimeter wave attenuation in sand and dust storms," IEEE Antennas Wireless Propagat. Lett., Vol. 10, 469-471, 2011.
doi:10.1109/LAWP.2011.2154374 Google Scholar
12. Elabdin, Z., M. R. Islam, O. O. Khalifa, and H. E. A. Raouf, "Mathematical model for the prediction of microwave signal attenuation due to duststorm," Progress In Electromagnetics Research M, Vol. 6, 139-153, 2009. Google Scholar
13. Ghobrial, S. I. and S. M. Sharief, "Microwave attenuation and cross polarization in dust storms," IEEE Trans. Antennas Propagat., Vol. 35, No. 4, 418-425, 1987.
doi:10.1109/TAP.1987.1144120 Google Scholar
14. Goldhirsh, J., "Attenuation and backscatter from a derived two-dimensional duststorm model," IEEE Trans. Antennas Propagat., Vol. 49, No. 12, 1703-1711, 2001.
doi:10.1109/8.982449 Google Scholar
15. Haddad, S., M. J. Salman, and R. K. Jha, "Effects of dust/sandstorm on some aspects of microwave propagation," ESA Special Publication, Vol. 194, 153-162, 1983. Google Scholar
16. Islam, M. D. R., Z. E. Omer Elshaikh, O. O. Khalifa, A. H. M. Z. Alam, S. Khan, and A. W. Naji, "Prediction of signal attenuation due to duststorms using MIE scattering," IIUM Engineering Journal, Vol. 11, No. 1, 71-87, 2010. Google Scholar
17. Jervase, J. and S. Sharif, "Influence of duststorms and reflector tolerance on cross polarization of earth satellite links," Proceedings Arabsat Symposium, 166-169, Riyadh, Saudi, 1988. Google Scholar
18. Kahnert, M. F., "Numerical methods in electromagnetic scattering theory," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 79, No. 80, 775-824, 2003.
doi:10.1016/S0022-4073(02)00321-7 Google Scholar
19. Kanellopoulos, J. D. and A. D. Panagopoulos, "Ice crystals and raindrop canting angle affecting the performance of a satellite system suffering from differential rain attenuation and cross-polarization," Radio Sci., Vol. 36, No. 5, 927-940, 2001.
doi:10.1029/1999RS002290 Google Scholar
20. Louza, S. and N. F. Audeh, "Effect of dust on microwave radiometry," 1992 IEEE Aerospace Applications Conference, Digest, 107-116, 1992.
doi:10.1109/AERO.1992.200380 Google Scholar
21. McEwan, N. and S. Bashir, "Microwave propagation in sand and dust storms: The theoretical basis for particle alignment," International Conference on Antennas and Propagation, IEE Conference Publication, ICAP 82, Vol. 219, 227-231, 1983. Google Scholar
22. Musa, A. and S. O. Bashir, "Electromagnetic waves propagation in dust storms at millimeter wave band," Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS), Vol. 4, No. 2, 162-167, Scholar Link Research Institute, 2013, ISSN: 2141-7016. Google Scholar
23. Musa, A. and S. O. Bashir, "Prediction of cross polarization discrimination at millimeter wave band due to dust storms," ARPN Journal of Engineering and Applied Sciences, Vol. 8, No. 7, 465-472, 2013. Google Scholar
24. Renno, N. O., A. S. Wong, and S. K. Atreya, "Electrical discharges in the martian dust devils and dust storms," Sixth International Conference on Mars, Pasadena, California, 2003. Google Scholar
25. Ryde, J. W., "Echo intensities and attenuation due to clouds, rain, hail, sand and dust storms at centimetre wavelengths,", Report 7831, 22-24, Research Laboratories of General Electric Company Ltd., 1941. Google Scholar
26. Silvester, P. P. and R. L. Ferrari, Finite Elements for Electrical Engineers, Cambridge Univ Press, New York, 1996.
doi:10.1017/CBO9781139170611
27. Sizun, H., Radio Wave Propagation for Telecommunication Application, Springer-Verlag, Paris, France, 2003.
28. Taflove, A., Ed., Advances in Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 1998.
29. Yin, W. and J. Xiao, "Cross polarization effect of circularly polarized microwave, millimeter wave propagation in the air suspending dust particles," Chinese J. Radio Sci., Vol. 5, 44-50, 1990. Google Scholar
30. Zheng, X. J., N. Huang, and Y. H. Zhou, "Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement," J. Geophys. Res., Vol. 108, 4322, 2003.
doi:10.1029/2002JD002572 Google Scholar
31. Zhou, Y., Q. Hea, and X. Zheng, "Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles," The European Physical Journal E, Vol. 17, 181-187, 2005.
doi:10.1140/epje/i2004-10138-5 Google Scholar
32. Chu, T. S., "Effect of sand storms on microwave propagation," Bell Syst. Tech. J, Vol. 5, 549-555, 1979.
doi:10.1002/j.1538-7305.1979.tb02234.x Google Scholar
33. Bashir, S. O. and N. J. McEwan, "Microwave propagation in dust storms: A review," IEE Proceedings, Vol. 133, No. 3, Pt. H, 241-247, 1986. Google Scholar
34. Ahmed, A. S., A. Ali, and M. A. Alhaider, "Airborne dust size analysis for tropospheric propagation of millimetric waves into dust storms," IEEE Trans. Geosci. Remote Sens., Vol. 25, No. 5, 593-599, 1987.
doi:10.1109/TGRS.1987.289838 Google Scholar