Vol. 56
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-04-01
Design of a Broadband Right-Angled Bend Using Transformation Optics
By
Progress In Electromagnetics Research C, Vol. 56, 183-193, 2015
Abstract
A right-angled waveguide bend using conformal transformation optics is proposed which guides the input electromagnetic wave smoothly through the waveguide, reduces the reflections and broadens the bandwidth of the device significantly. The isotropic material parameters are obtained through solving Laplace's equations with Dirichlet and Neumann boundary conditions. It is shown that the performance of the proposed bend is mainly determined by refractive indices lower than one. Utilizing this, the approximated resulting medium is implemented by drilling hole arrays in a dielectric background. In order to take advantage of planar technology, it can be implemented in a substrate integrated waveguide.
Citation
Mozhdeh Mola Alireza Yahaghi , "Design of a Broadband Right-Angled Bend Using Transformation Optics," Progress In Electromagnetics Research C, Vol. 56, 183-193, 2015.
doi:10.2528/PIERC14121508
http://www.jpier.org/PIERC/pier.php?paper=14121508
References

1. Bateman, H., "The transformation of the electrodynamical equations," Proc. London Math. Soc., Vol. 8, 223-264, 1910.

2. Van Dantzig, D., "The fundamental equations of electromagnetism, independent of metrical geometry," Proc. Cambridge Phil. Soc., Vol. 30, 421-427, 1934.

3. Teixeira, F. L. and W. C. Chew, "Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves," Microwave Opt. Technol. Lett., Vol. 17, No. 4, 231-236, 1998.

4. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 665-686, 1999.

5. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell’s equations," J. Mod. Opt., Vol. 43, No. 4, 773-793, 1996.

6. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, No. 1, 169-187, 1999.

7. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.

8. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.

9. Teixeira, F. L., "Closed-form metamaterial blueprints for electromagnetic masking of arbitrarily shaped convex PEC objects," IEEE Antennas Wireless Propagat. Lett., Vol. 6, 163-164, 2007.

10. Ozgun, O. and M. Kuzuoglu, "Electromagnetic metamorphosis: Reshaping scatterers via conformal anisotropic metamaterial coatings," Microwave Opt. Technol. Lett., Vol. 49, No. 10, 2386-2392, 2007.

11. Chen, H., B. Hou, S. Chen, X. Ao, W. Wen, and C. Chan, "Design and experimental realization of a broadband transformation media field rotator at microwave frequencies," Physical Review Letters, Vol. 102, 183903, 2009.

12. Kwon, D.-H. and D. H. Werner, "Polarization splitter and polarization rotator designs based on transformation optics," Optics Express, Vol. 16, 18731-18738, 2008.

13. Luo, Y., H. Chen, J. Zhang, L. Ran, and J. A. Kong, "Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations," Physical Review B, Vol. 77, 125127, 2008.

14. Jiang, W. X., T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, "Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces," Applied Physics Letters, Vol. 92, 264101-1-264101-3, 2008.

15. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations," Photonics and Nanostructures-Fundamentals and Applications, Vol. 6, 87-95, 2008.

16. Wang, W., L. Lin, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, "Electromagnetic concentrators with reduced material parameters based on coordinate transformation," Optics Express, Vol. 16, 11431-11437, 2008.

17. Ding, W., D. Tang, Y. Liu, L. Chen, and X. Sun, "Arbitrary waveguide bends using isotropic and homogeneous metamaterial," Applied Physics Letters, Vol. 96, 041102-1-041102-3, 2010.

18. Han, T., C.-W. Qiu, J.-W. Dong, X. Tang, and S. Zouhdi, "Homogeneous and isotropic bends to tunnel waves through multiple different/equal waveguides along arbitrary directions," Optics Express, Vol. 19, 13020-13030, 2011.

19. Jiang, W. X., T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, "Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials," Physical Review E, Vol. 78, 066607, 2009.

20. Mei, Z. L. and T. J. Cui, "Arbitrary bending of electromagnetic waves using isotropic materials," Journal of Applied Physics, Vol. 105, 04913-1-04913-5, 2009.

21. Rahm, M., D. Roberts, J. Pendry, and D. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Optics Express, Vol. 16, 11555-11567, 2008.

22. Roberts, D., M. Rahm, J. Pendry, and D. Smith, "Transformation-optical design of sharp waveguide bends and corners," Applied Physics Letters, Vol. 93, 251111-1-251111-3, 2008.

23. Wu, X., Z. Lin, H. Chen, and C. Chan, "Transformation optical design of a bending waveguide by use of isotropic materials," Applied Optics, Vol. 48, G101-G105, 2009.

24. Xu, H., B. Zhang, T. Yu, G. Barbastathis, and H. Sun, "Dielectric waveguide bending adapter with ideal transmission: Practical design strategy of area-preserving affine transformation optics," JOSA B, Vol. 29, 1287-1290, 2012.

25. Aghanejad, I., H. Abiri, and A. Yahaghi, "Design of high-gain lens antenna by gradient-index metamaterials using transformation optics," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4074-4081, 2012.

26. Luo, Y., J. Zhang, H. Chen, J. Huangfu, and L. Ran, "High-directivity antenna with small antenna aperture," Applied Physics Letters, Vol. 95, 193506, 2009.

27. Yan, M., W. Yan, and M. Qiu, "Cylindrical superlens by a coordinate transformation," Physical Review B, Vol. 78, 125113, 2008.

28. Smith, D. R., Y. Urzhumov, N. B. Kundtz, and N. I. Landy, "Enhancing imaging systems using transformation optics," Optics Express, Vol. 18, 21238-21251, 2010.

29. Roberts, D., N. Kundtz, and D. Smith, "Optical lens compression via transformation optics," Optics Express, Vol. 17, 16535-16542, 2009.

30. Gney, D., T. Koschny, and C. M. Soukoulis, "Reducing ohmic losses in metamaterials by geometric tailoring," Physical Review B, Vol. 80, 125129, 2009.

31. Schurig, D., J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.

32. Li, J. and J. Pendry, "Hiding under the carpet: A new strategy for cloaking," Physics Optics, arXiv Preprint arXiv: 0806.4396, 2008.

33. Popa, B.-I. and S. A. Cummer, "Cloaking with optimized homogeneous anisotropic layers," Physical Review A, Vol. 79, 023806, 2009.

34. Turpin, J. P., A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, "Conformal mappings to achieve simple material parameters for transformation optics devices," Optics Express, Vol. 18, 244-252, 2010.

35. Landy, N. I. and W. J. Padilla, "Guiding light with conformal transformations," Optics Express, Vol. 17, No. 1, 14879-14872, 2009.

36. Ma, Y., N. Wang, and C. Ong, "Application of inverse, strict conformal transformation to design waveguide devices," JOSA A, Vol. 27, 968-972, 2010.

37. Mei, Z.-L., J. Bai, T. M. Niu, and T.-J. Cui, "A planar focusing antenna design with the quasi-conformal mapping," Progress In Electromagnetics Research M, Vol. 13, 261-273, 2010.

38. Garcia-Meca, C., A. Martinez, and U. Leonhardt, "Engineering antenna radiation patterns via quasi-conformal mappings," Optics Express,, Vol. 19, 23743-23750, 2011.

39. Liang, X.-P., K. A. Zaki, and A. E. Atia, "A rigorous three plane mode-matching technique for characterizing waveguide T-junctions and its application in multiplexer design," IEEE Trans. Microwave Theory and Techniques, Vol. 39, No. 12, 2138-2147, Dec. 1991.

40. Liang, X.-P., "Modeling of dual mode dielectric resonator filters and multiplexers,", Ph.D. Dissertation, University of Maryland at College Park, 1993.

41. Peverini, O., G. Virone, R. Tascone, and G. Addamo, "Passive microwave feed chains for high-capacity satellite communications systems," Advances in Satellite Communications, Dr. M. Karimi, Ed., InTech, 2011, ISBN: 978-953-307-562-4.

42. Djerafi, T. and K. Wu, "Super-compact substrate integrated waveguide cruciform directional coupler," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 11, 757-759, 2007.

43. Bochra, R., et al., "Design of optimal chamfered bends in rectangular substrate integrated waveguide," IJCSI International Journal of Computer Science Issues, Vol. 8, No. 4, 376-379, Jul. 2011.

44. Ozgun, O. and M. Kuzuoglu, "Utilization of anisotropic metamaterial layers in waveguide miniaturization and transitions," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 11, 754-756, 2007.

45. Donderici, B. and F. L. Teixeira, "Metamaterial blueprint for reflectionless waveguide bends," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 4, 233-235, 2008.

46. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.

47. Xu, H., et al., "Dielectric waveguide bending adapter with ideal transmission: Practical design strategy of area-preserving affine transformation optics," J. Opt. Soc. Am. B, Vol. 29, 1287-1290, 2012.

48. Ding, W., D. Tang, Y. Liu, L. Chen, and X. Sun, "Arbitrary waveguide bends using isotropic and homogeneous metamaterial," Applied Physics Letters, Vol. 96, 041102-1-041102-3, 2010.

49. Wu, X., Z. Lin, H. Chen, and C. Chan, "Transformation optical design of a bending waveguide by use of isotropic materials," Applied Optics, Vol. 48, G101-G105, 2009.

50. Heiblum, M. and J. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum. Electron., Vol. 11, 75-83, 1975.

51. Wu, X. H. and A. A. Kishk, "Analysis and design of substrate integrated waveguide using efficient 2D hybrid method," Synthesis Lectures on Computational Electromagnetics, Vol. 5, 1-90, 2010.

52., , https://www.comsol.com/.

53., , http://www.rogerscorp.com/acm/products/51/TMM-13i-Laminates.aspx.

54. Vasic, B., G. Isic, R. Gajic, and K. Hingerl, "Controlling electromagnetic fields with graded photonic crystals in metamaterial regime," Optics Express, Vol. 18, 20321-20333, 2010.

55. Che, W., K. Deng, D. Wang, and Y. Chow, "Analytical equivalence between substrate-integrated waveguide and rectangular waveguide," IET Microwaves, Antennas and Propagation, Vol. 2, 35-41, 2008.

56., , http://www.ansys.com/.