1. Hashmi, M. S., Z. S. Rogojan, and F. M. Ghannouchi, "A flexible dual-inflection point RF predistortion linearizer for microwave power amplifiers," Progress In Electromagnetics Research C, Vol. 13, 1-18, 2010.
doi:10.2528/PIERC10012609 Google Scholar
2. El Maazouzi, L., A. Mediavilla, and P. Colantonio, "A contribution to linearity improvement of a highly efficient PA for WIMAX applications," Progress In Electromagnetics Research, Vol. 119, 59-84, 2011.
doi:10.2528/PIER11051602 Google Scholar
3. Du, T., C. Yu, Y. Liu, J. Gao, S. Li, and Y. Wu, "A new accurate Volterra-based model for behavioral modeling and digital predistortion of RF power amplifiers," Progress In Electromagnetics Research C, Vol. 29, 205-218, 2012.
doi:10.2528/PIERC12032707 Google Scholar
4. Jiang, T., Y. Yang, and Y.-H. Song, "Exponential companding technique for PAPR reduction in OFDM systems," IEEE Trans. Broadcast., Vol. 51, No. 2, 244-248, Jun. 2005.
doi:10.1109/TBC.2005.847626 Google Scholar
5. Krongold, B. S. and D. L. Jones, "PAR reduction in OFDM via active constellation extension," IEEE Trans. Broadcast., Vol. 49, No. 3, 258-268, Sep. 2003.
doi:10.1109/TBC.2003.817088 Google Scholar
6. Baxley, R. J., C. Zhao, and G. T. Zhou, "Constrained clipping for crest factor reduction in OFDM," IEEE Trans. Broadcast., Vol. 52, No. 4, 570-575, 2006.
doi:10.1109/TBC.2006.883301 Google Scholar
7. Armstrong, J., "Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering," Electron. Lett., Vol. 38, No. 5, 246-247, 2002.
doi:10.1049/el:20020175 Google Scholar
8. Gilabert, P. L., M. E. Gadringer, G. Montoro, M. L. Mayer, D. D. Silveira, E. Bertran, and G. Magerl, "An efficient combination of digital predistortion and OFDM clipping for power amplifiers," Int. J. RF Microw. Compu. Aid. Eng., 583-591, 2009.
doi:10.1002/mmce.20381 Google Scholar
9. Helaoui, M., S. Boumaiza, A. Ghazel, and F. M. Ghannouchi, "On the RF/DSP design for efficiency of OFDM transmitters," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 7, 2355-2361, 2005.
doi:10.1109/TMTT.2005.850437 Google Scholar
10. Sperlich, R., Y. Park, G. Copeland, and J. S. Kenney, "Power amplifier linearization with digital pre-distortion and crest factor reduction," IEEE MTT-S Int. Microwave Symposium (IMS), 669-672, 2004. Google Scholar
11. Nader, C., P. N. Landin, W. V. Moer, N. Bjorsell, and P. Handel, "Performance evaluation of peak-to-average power ratio reduction and digital pre-distortion for OFDM based systems," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3504-3511, 2011.
doi:10.1109/TMTT.2011.2170583 Google Scholar
12. Nader, C., P. Handel, and N. Bjorsell, "Peak-to-average power reduction of OFDM signals by convex optimization: Experimental validation and performance optimization," IEEE Trans. Instrum. Meas., Vol. 60, No. 2, 473-479, 2011.
doi:10.1109/TIM.2010.2050360 Google Scholar
13. Nader, C., P. N. Landin, W. V. Moer, N. Bjorsell, P. Handel, and D. R¨onnow, "Peak-power controlling technique for enhancing digital pre-distortion of RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 11, 3571-3581, 2012.
doi:10.1109/TMTT.2012.2213836 Google Scholar
14. Hammi, O., S. Carichner, B. Vassilakis, and F. M. Ghannouchi, "Synergetic crest factor reduction and baseband digital predistortion for adaptive 3G Doherty power amplifier linearizer design," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2602-2608, 2008.
doi:10.1109/TMTT.2008.2004899 Google Scholar
15. Zhu, A., P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, "Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based volterra series," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 7, 1524-1534, 2008.
doi:10.1109/TMTT.2008.925211 Google Scholar
16. Davis, J. A. and J. Jedwab, "Peak-to-mean power control and error correction for OFDM transmission using golay sequences and reed-muller codes," Electron. Lett., Vol. 33, No. 4, 267-268, 1997.
doi:10.1049/el:19970205 Google Scholar
17. Braithwaite, R. N., "A combined approach to digital predistortion and crest factor reduction for the linearization of an RF power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 291-302, 2013.
doi:10.1109/TMTT.2012.2222911 Google Scholar
18. Ding, L., G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, "Memory polynomial predistorter based on the indirect learning architecture," IEEE Global Telecommunications Conference, Vol. 1, 967-971, Nov. 2002. Google Scholar
19. Ding, L., Z. Ma, D. R. Morgan, M. Zierdt, and J. Pastalan, "A least-squares/newton method for digital predistortion of wideband signals," IEEE Trans. Commun., Vol. 54, No. 5, 833-840, 2006.
doi:10.1109/TCOMM.2006.873996 Google Scholar
20. Hammi, O., S. Carichner, B. Vassilakis, and F. M. Ghannouchi, "Effects of crest factor reduction on the predistortion performance for multi-carrier 3G RF power amplifiers," IEEE MTT-S Int. Microwave Symposium (IMS), 1085-1088, 2009. Google Scholar
21. Ai, B., Z. Yang, C. Pan, T. Zhang, and J. Ge, "Effects of PAPR reduction on HPA predistortion," IEEE Trans. Consum. Electr., Vol. 51, No. 4, 1143-1147, 2005.
doi:10.1109/TCE.2005.1561836 Google Scholar
22. Farabegoli, A., B. Sogl, J. E. Mueller, and R. Weigel, "Advanced transmitters with combined crest factor reduction and digital predistortion techniques," IEEE International Conference on Radio and Wireless Symposium (RWS), 133-135, Newport Beach, Jan. 2014. Google Scholar