Vol. 43
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-07-28
Comprehensive RCS Simulation of Dispersive Media Using SO-FDTD-DPW Method
By
Progress In Electromagnetics Research M, Vol. 43, 19-30, 2015
Abstract
Perfectly Matched Layer (PML) is modeled by Split-Field FDTD (SF-FDTD) in order to simulate Radar Cross Section (RCS) of a plasma slab. PML is used as an absorbing boundary, and discrete plane wave (DPW) is employed to generate plane wave. DPW method has a power isolation of -300 dB between scattered-field and total-field regions. The dispersive media is modelled by shift-operator FDTD. In this article, the SO-FDTD and DPW are combined, and it is proved that this combination shows a good stability. Finally, two different plasma profiles (exponential and polynomial) are used to prove reflection coefficient of a conductive layer can be reduced by choosing true profile of covering layer. By using Near-to-Far-Field Transformation, all fields are transferred to far-field region to calculate RCS.
Citation
Farid Mirhosseini, and Bruce G. Colpitts, "Comprehensive RCS Simulation of Dispersive Media Using SO-FDTD-DPW Method," Progress In Electromagnetics Research M, Vol. 43, 19-30, 2015.
doi:10.2528/PIERM15050603
References

1. Engquist, B. and A.Majda, "Absorbing boundary conditions for the numerical simulation of waves," Mathematics of Computation, Vol. 31, No. 139, 629-651, Jul. 1977.
doi:10.1090/S0025-5718-1977-0436612-4        Google Scholar

2. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Transactions on Electromagnetic Compatibility, Vol. 23, No. 4, 377-382, Nov. 1981.        Google Scholar

3. Berenger, J. P., "A perfectly matched layer for absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159        Google Scholar

4. Berenger, J. P., "Perfectly matched layer for the FDTD solution of wave-structure interaction problems," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 1, 110-117, Jan. 1996.
doi:10.1109/8.477535        Google Scholar

5. Berenger, J. P., "Three-dimentinal perfectly matched layer for absorption of electromagnetic waves," Journal of Computational Physics, Vol. 127, 363-379, 1996.
doi:10.1006/jcph.1996.0181        Google Scholar

6. Lu, M., M. Lv, A. A. Ergin, B. Shanker, and E. Michielssen, "Multilevel plane wave time domain-based global boundary kernels for two-dimensional finite difference time domain simulations," Radio Science, Vol. 39, No. 4, Aug. 2004.
doi:10.1029/2003RS002928        Google Scholar

7. Kivi, J. and M. Okoniewski, "Switched boundary condition (XBC) in FDTD," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 4, 274-276, Apr. 2004.
doi:10.1109/LMWC.2005.845745        Google Scholar

8. Sadiku, M. N. O., "Finite difference method," Numerical Techniques in Electromagnetics, 1st Edition, CRC Press, Boca Raton, Florida, 1992.        Google Scholar

9. Taflove, A., "Computational Electrodynamics --- The Finite-difference Time-domain Method," Artech House, 2005.        Google Scholar

10. Oguz, U. and L. Gurel, "An efficient and accurate technique for the incident-wave excitations in the FDTD method," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 6, 869-882, Jun. 1998.
doi:10.1109/22.681215        Google Scholar

11. Guiffaut, C. and K. Mahdjoubi, "A perfect wideband plane wave injector for FDTD method," Proc. IEEE APS. Int. Symp., Vol. 1, 236-239, Salt Lake City, UT, 2000.        Google Scholar

12. Moss, C. D., F. L. Teixeira, J. A. Kong, and , "Analysis and compensation of numerical dispersion in the FDTD method for layered, anisotropic media," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1174-1184, Sep. 2002.
doi:10.1109/TAP.2002.802092        Google Scholar

13. Schneider, J. B., "Planewaves in FDTD simulations and a nearly perfect total-field/scattered-field boundary," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 12, 3280-3287, Dec. 2004.
doi:10.1109/TAP.2004.836403        Google Scholar

14. Tan, T. and M. Potter, "Optimized analytic field propagator (O-AFP) for plane wave injection in FDTD simulations," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 824-831, Mar. 2010.
doi:10.1109/TAP.2009.2039310        Google Scholar

15. Tan, T. and M. E. Potter, "1-D multipoint auxiliary source propagator for the total-field/scattered-field FDTD formulation," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 144-148, 2007.        Google Scholar

16. Tan, T. and M. Potter, "FDTD discrete planewave (FDTD-DPW) formulation for a perfectly matched source in TFSF simulation," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2641-2648, Aug. 2010.
doi:10.1109/TAP.2010.2050446        Google Scholar

17. Yang, H. W., R. S. Chen, and Y. Zhang, "SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma," Acta. Phys. Sin., Vol. 55, No. 7, 3465-3469, Jul. 2006.        Google Scholar

18. Ge, D. B., Y. L. Wu, and X. Q. Zhu, "Shift operator method applied for dispersive medium in FDTD analysis," J. Radio Sci., Vol. 18, No. 4, 359-362, Aug. 2003.        Google Scholar

19. Yang, H. W., "A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation," Comput. Phys. Commun., Vol. 180, 55-60, 2009.
doi:10.1016/j.cpc.2008.08.007        Google Scholar

20. Luebbers, R. J., K. S. Kunz, M. Schneider, and F. Hunsberger, "A finite-difference time-domain near zone to far zone transformation," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 4, 429-433, Apr. 1991.
doi:10.1109/8.81453        Google Scholar

21. Balanis, C. A., Advanced Engineering Electromagnetics, 1st Ed., Wiley, 1989.

22. Liu, G. and S. D. Gedney, "Perfectly matched layer media for an unconditionally stable threed-imensional ADI-FDTD method," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 7, 261-263, Jul. 2000.        Google Scholar

23. Li, X., A. Taflove, and V. Backman, "Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 35-38, 2005.
doi:10.1109/LAWP.2005.845038        Google Scholar

24. Stratton, J. A., Electromagnetic Theory, 1st Ed., McGraw Hill Book Company, 1941.

25. Ruck, G. T., Radar Cross Section Handbook, Plenum Press, 1970.
doi:10.1007/978-1-4899-5324-7