1. Wood, J. R. and H. D. Wagner, "Single-wall carbon nanotubes as molecular pressure sensors," Appl. Phys. Lett., Vol. 67, 2883-2885, 2000.
doi:10.1063/1.126505 Google Scholar
2. Li, C. Y. and T. W. Chou, "Strain and pressure sensing using single-walled carbon nanotubes," Nanotechnology, Vol. 15, 1493-1496, 2004.
doi:10.1088/0957-4484/15/11/021 Google Scholar
3. Li, J., Y. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyappan, "Carbon nanotube sensors for gas and organic vapor detection," Nano Lett., Vol. 3, 929-933, 2003.
doi:10.1021/nl034220x Google Scholar
4. Besteman, K., J.-O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker, "Enzyme-coated carbon nanotubes as single-molecule biosensors," Nano Lett., 727-730, 2003.
doi:10.1021/nl034139u Google Scholar
5. Hoenlein, W., F. Kreupl, G. S. Duesberg, A. P. Graham, M. Liebau, R. V. Seidel, and E. Unger, "Carbon nanotube applications in microelectronics," IEEE Trans. on Components and Packaging Tech., Vol. 27, 629-634, 2004.
doi:10.1109/TCAPT.2004.838876 Google Scholar
6. Hanson, G. W., "Fundamental transmitting properties of carbon nanotube antennas," IEEE Transactions on Antenna and Propagation, Vol. 53, 3426-3435, 2005.
doi:10.1109/TAP.2005.858865 Google Scholar
7. Hanson, G. W. and J. A. Berres, "Multiwall carbon nanotubes at RF-THz frequencies: Scattering, shielding, effective conductivity and power dissipation," IEEE Transactions on Antenna and Propagation, Vol. 59, 3098-3103, 2011.
doi:10.1109/TAP.2011.2158951 Google Scholar
8. Burke, P. J., "Lüttinger theory as a model of the gigahertz electrical properties of carbon nanotubes," IEEE Transaction on Nanotechnology, Vol. 1, 129-144, 2002.
doi:10.1109/TNANO.2002.806823 Google Scholar
9. Burke, P. J., "Correction to L¨uttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes," IEEE Transaction on Nanotechnology, Vol. 3, 331, 2004. Google Scholar
10. Burke, P. J., "An RF circuit model for carbon nanotubes," IEEE Transaction on Nanotechnology, Vol. 2, 55-58, 2003.
doi:10.1109/TNANO.2003.808503 Google Scholar
11. Burke, P. J., "Correction to an RF circuit model for carbon nanotubes," IEEE Transaction on Nanotechnology, Vol. 3, 331, 2004. Google Scholar
12. Burke, P., S. Li, and Z. Yu, "Quantitative theory of nanowire and nanotube antenna performance," IEEE Transaction on Nanotechnology, Vol. 5, 314-334, 2006.
doi:10.1109/TNANO.2006.877430 Google Scholar
13. Hanson, G. W. and J. Hao, "Infrared and optical properties of carbon nanotube dipole antennas," IEEE Transaction on Nanotechnology, Vol. 5, 766-775, 2006.
doi:10.1109/TNANO.2006.883475 Google Scholar
14. Hanson, G. W., "Current on an infinitely-long carbon nanotube antenna excited by a gap generator," IEEE Transaction on Antennas and Propagation, Vol. 54, 76-81, 2006.
doi:10.1109/TAP.2005.861550 Google Scholar
15. Arash, B., Q. Wang, and V. K. Varadan, "Mechanical properties of carbon nanotube/polymer composites," Scientific Reports, Vol. 4, Article Number 6479, 1-8, 2014. Google Scholar
16. Chu, K. and S.-H. Park, "Fabrication of a hybrid carbon-based composite for flexible heating element with a zero temperature coefficient of resistance," IEEE Electron Device Letters, Vol. 36, 50-52, 2015.
doi:10.1109/LED.2014.2374698 Google Scholar
17. Fan, J., Z. Chen, N. Tang, H. Li, and Y. Yin, "Supercapacitors based on composite material of MnO2 and carbon nanotubes," Proceedings of the 13th IEEE International Conference on Nanotechnology Beijing, 933-963, China, 2013. Google Scholar
18. Aryasomayajula, L., R. Rieske, and K.-J. Wolter, "Application of copper-carbon nanotubes composite in packaging interconnects," 34th Int. Spring Seminar on Electronics Technology, 531-536, 2011. Google Scholar
19. Bakrudeen, S. B., "Dramatic improvement in mechanical properties and sem image analysis of AI-CNT composite," Proceedings of the International Conference on Advanced Nanomaterial & Emerging Engineering Technologies (ICANMEET-20J3), 184-189, 2013.
doi:10.1109/ICANMEET.2013.6609272 Google Scholar
20. Han, W.-Q. and A. Zettl, "Coating single-walled carbon nanotubes with tin oxide," Nano Lett., Vol. 3, 681-683, 2003.
doi:10.1021/nl034142d Google Scholar
21. Li, H., C.-S. Ha, and II Kim, "Fabrication of carbon nanotube/SiO2 and carbon nanotube/SiO2/Ag nanoparticles hybrids by using plasma treatment," Nanoscale Res. Lett., Vol. 4, 1384-1388, 2009.
doi:10.1007/s11671-009-9409-4 Google Scholar
22. Su, Y., H. Wei, Z. Yang, and Y. Zhang, "Highly compressible carbon nanowires synthesized by coating single-walled carbon nanotubes," Carbon, Vol. 49, 3579-3584, 2001.
doi:10.1016/j.carbon.2011.04.060 Google Scholar
23. Qunqinq, L., S. Fan, W. Han, C. H. Sun, and W. Liang, "Coating of carbon nanotube with nickel by electroless plating method," Jpn. J. Appl. Phys., Vol. 36, L501-L503, 1997.
doi:10.1143/JJAP.36.L501 Google Scholar
24. Zhu, L., G. Lu, S. Mao, and J. Chen, "Ripening of silver nanoparticles on carbon nanotubes," Nano: Brief Rep. and Rev., Vol. 2, 149-156, 2007. Google Scholar
25. Morihisa, Y., C. Kimura, M. Yukawa, H. Aoki, T. Kobayashi, S. Hayashi, S. Akita, Y. Nakayama, and T. Sugino, "Improved field emission characteristic of individual carbon nanotube coated with boron nitride nanofilm," J. Vac. Sci. Technol. B, Vol. 26, 872-875, 2008.
doi:10.1116/1.2822990 Google Scholar
26. Peng, Y. and Q. Chen, "Fabrication of one-dimensional Ag/multiwalled carbon nanotube nano-composite," Nanoscale Res. Lett., Vol. 7, 1-5, 2012.
doi:10.1186/1556-276X-7-1 Google Scholar
27. Peng, Y. and Q. Chen, "Fabrication of copper/MWCNT hybrid nanowires using electroless copper deposition activated with silver nitrate," J. Electrochen Soc., Vol. 159, D72-D76, 2012.
doi:10.1149/2.047202jes Google Scholar
28. Hanson, G. W., "A common electromagnetic framework for carbon nanotubes and solid nanowires-spatially distributed impedance, and transmission line model," IEEE Transaction on Microwave Theory and Techniques, Vol. 59, 9-20, 2011.
doi:10.1109/TMTT.2010.2090693 Google Scholar
29. Orfanidis, S. J., "Electromagnetic waves and antennas," Maxwell’s Equations, Chapter 1, 2010. Google Scholar
30. Hanson, G. W., "Radiation efficiency of nanoradius dipole antennas in the microwave and far-infrared regime," IEEE Antenna and Propagation Magazine, Vol. 50, 1-10, 2008.
doi:10.1109/MAP.2008.4563565 Google Scholar
31. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., John Wiley and Sons, 2005.