1. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, Princeton University Press, 2008.
2. Luo, C., M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Cerenkov radiation in photonic crystals," Science, Vol. 299, 368-371, 2003.
doi:10.1126/science.1079549 Google Scholar
3. Chang, G., L.-J. Chen, and F. X. Kurtner, "Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation," Optics Letters, Vol. 35, No. 14, 2361-2363, 2010.
doi:10.1364/OL.35.002361 Google Scholar
4. Shen, X.-W., Y. J.-H. Yuan, KX.-Z. Sang, C.-X. Yu, R. Lan, X. Min, H. Ying, C.-M. Xia, and L.-T. Hou, "Highly efficient Cherenkov radiation generation in the irregular point of hollow-core photonic crystal fiber," Chinese Phys. B, Vol. 21, 114102, 2012.
doi:10.1088/1674-1056/21/11/114102 Google Scholar
5. Genevet, P., D. Wintz, A. Ambrosio, A. She, R. Blanchard, and F. Capasso, "Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial," Nature Nanotechnology, Vol. 10, 804-809, 2015.
doi:10.1038/nnano.2015.137 Google Scholar
6. Cherenkov, P. A., "Visible emission of clean liquids by action of γ-radiation," Dokl. Akad. Nauk., Vol. 2, 451-454, 1934. Google Scholar
7. Jackson, J. D., Classical Electrodynamics, John Willey and Sons, 1998.
8. Afanasiev, G. N., Cherenkov Radiation in a Dispersive Medium, Vavilov-Cherenkov and Synchrotron Radiation, Fundamental Theories of Physics, Kluwer Academic Publishers, 2004.
9. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005.
10. Burlak, G., "Spectrum of Cherenkov radiation in dispersive metamaterials with negative refraction index," Progress In Electromagnetics Research, Vol. 132, 149-158, 2012.
doi:10.2528/PIER12071911 Google Scholar
11. Burlak, G. and E. Martínez-Sánchez, "Change of structure of the Cherenkov emission at modulated source in dispersive metamaterials," Progress In Electromagnetics Research, Vol. 139, 277-288, 2013.
doi:10.2528/PIER13032002 Google Scholar
12. Kim, S. H., S. K. Kim, and Y. H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B, Vol. 73, 235117, 2006.
doi:10.1103/PhysRevB.73.235117 Google Scholar
13. Averkov, Yu. O. and V. M. Yakovenko, "Cherenkov radiation by an electron particle that moves in a vacuum above a left-handed material," Phys. Rev. B, Vol. 79, 193402-193412, 2005. Google Scholar
14. Xi, S., H. Chen, T. Jiang, L. Ran, J. Huangfu, B. L. Wu, J. A. Kong, and M. Chen, "Experimental verification of reversed cherenkov radiation in left-handed metamaterial," Phys. Rev. Lett., Vol. 103, 194801, 2009.
doi:10.1103/PhysRevLett.103.194801 Google Scholar
15. Averkov, Yu. O., A. V. Kats, and V. M. Yakovenko, "Electron beam excitation of left-handed surface electromagnetic waves at artificial interfaces," Phys. Rev. B, Vol. 72, 205110-205114, 2005.
doi:10.1103/PhysRevB.72.205110 Google Scholar
16. Zhou, J., Z. Duan, Y. Zhang, M. Hu, W. Liu, P. Zhang, and S. Liu, "Numerical investigation of Cherenkov radiations emitted by an electron beam particle in isotropic double-negative metamaterials," Nuclear Instruments and Methods in Physics Research Section A, Vol. 654, No. 1, 475-480, 2011.
doi:10.1016/j.nima.2011.07.004 Google Scholar
17. Duan, Z. Y., Y. S. Wang, X. T. Mao, W. X. Wang, and M. Chen, "Experimental demonstration of double-negative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.
doi:10.2528/PIER11090502 Google Scholar
18. Zhu, L., F.-Y. Meng, F. Zhang, J. Fu, Q. Wu, X. M. Ding, and J. L.-W. Li, "An ultra-low loss split ring resonator by suppressing the electric dipole moment approach," Progress In Electromagnetics Progress In Electromagnetics, Vol. 137, 239-254, 2013.
doi:10.2528/PIER12121703 Google Scholar
19. Duan, Z., C. Guo, and M. Chen, "Enhanced reversed Cherenkov radiation in a waveguide with double-negative metamaterials," Opt. Express, Vol. 19, 13825-13830, 2011.
doi:10.1364/OE.19.013825 Google Scholar
20. García de Abajo, F. J., A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique, "Cherenkov effect as a probe of photonic nanostructures," Phys. Rev. Lett., Vol. 91, 143902, 2003.
doi:10.1103/PhysRevLett.91.143902 Google Scholar
21. Brasch, V., M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, "Photonic chip-based optical frequency comb using soliton Cherenkov radiation,", DOI: 10.1126/science.aad4811, 2015. Google Scholar
22. Schwartz, T., G. Bartal, S. Fishman, and M. Segev, "Transport and Anderson localization in disordered two-dimensional photonic lattices," Nature, Vol. 446, 52-55, 2007.
doi:10.1038/nature05623 Google Scholar
23. Wiersma, D. S., "The physics and applications of random lasers," Nat. Phys., Vol. 4, 359-367, 2008.
doi:10.1038/nphys971 Google Scholar
24. Burlak, G. and Y. G. Rubo, "Mirrorless lasing from light emitters in percolating clusters," Phys. Rev. A, Vol. 92, 013812, 2015.
doi:10.1103/PhysRevA.92.013812 Google Scholar
25. Carusotto, I., M. Artoni, G. C. La Rocca, and F. Bassani, "Slow group velocity and Cherenkov radiation," Phys. Rev. Lett., Vol. 87, 064801, 2001.
doi:10.1103/PhysRevLett.87.064801 Google Scholar
26. Udagedara, I., M. Premaratne, I. D. Rukhlenko, H. T. Hattori, and G. P. Agrawal, "Unified perfectly matched layer for finite-difference time-domain modeling of dispersive media," Opt. Express, Vol. 7, 22179-21190, 2009. Google Scholar