Vol. 47
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-03-27
The Cherenkov Emission in Regular and Random Photonic Crystals
By
Progress In Electromagnetics Research M, Vol. 47, 77-86, 2016
Abstract
We systematically study the Cherenkov optical emission by a nonrelativistic charge uniformly moving in parallel to surface of a photonic crystal by the FDTD simulations. It is found that a near-static structure of field oscillations produced by a discontinuity of dielectric permittivity in the surface of photonic lattice is generated. Such oscillations have large amplitude in the Cherenkov group cone and generate a number of well defined spectral resonances corresponding to eigenmodes of the photonic grid. The dynamics and field properties in photonic lattice with random vacancies are investigated too. It is found that even at medium level of a random perturbation the field shape shows the structural stability of the Cherenkov emission field in a photonic crystal.
Citation
Gennadiy Burlak, and Erika Martinez-Sanchez, "The Cherenkov Emission in Regular and Random Photonic Crystals," Progress In Electromagnetics Research M, Vol. 47, 77-86, 2016.
doi:10.2528/PIERM15121702
References

1. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, Princeton University Press, 2008.

2. Luo, C., M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Cerenkov radiation in photonic crystals," Science, Vol. 299, 368-371, 2003.
doi:10.1126/science.1079549

3. Chang, G., L.-J. Chen, and F. X. Kurtner, "Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation," Optics Letters, Vol. 35, No. 14, 2361-2363, 2010.
doi:10.1364/OL.35.002361

4. Shen, X.-W., Y. J.-H. Yuan, KX.-Z. Sang, C.-X. Yu, R. Lan, X. Min, H. Ying, C.-M. Xia, and L.-T. Hou, "Highly efficient Cherenkov radiation generation in the irregular point of hollow-core photonic crystal fiber," Chinese Phys. B, Vol. 21, 114102, 2012.
doi:10.1088/1674-1056/21/11/114102

5. Genevet, P., D. Wintz, A. Ambrosio, A. She, R. Blanchard, and F. Capasso, "Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial," Nature Nanotechnology, Vol. 10, 804-809, 2015.
doi:10.1038/nnano.2015.137

6. Cherenkov, P. A., "Visible emission of clean liquids by action of γ-radiation," Dokl. Akad. Nauk., Vol. 2, 451-454, 1934.

7. Jackson, J. D., Classical Electrodynamics, John Willey and Sons, 1998.

8. Afanasiev, G. N., Cherenkov Radiation in a Dispersive Medium, Vavilov-Cherenkov and Synchrotron Radiation, Fundamental Theories of Physics, Kluwer Academic Publishers, 2004.

9. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, 2005.

10. Burlak, G., "Spectrum of Cherenkov radiation in dispersive metamaterials with negative refraction index," Progress In Electromagnetics Research, Vol. 132, 149-158, 2012.
doi:10.2528/PIER12071911

11. Burlak, G. and E. Martínez-Sánchez, "Change of structure of the Cherenkov emission at modulated source in dispersive metamaterials," Progress In Electromagnetics Research, Vol. 139, 277-288, 2013.
doi:10.2528/PIER13032002

12. Kim, S. H., S. K. Kim, and Y. H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B, Vol. 73, 235117, 2006.
doi:10.1103/PhysRevB.73.235117

13. Averkov, Yu. O. and V. M. Yakovenko, "Cherenkov radiation by an electron particle that moves in a vacuum above a left-handed material," Phys. Rev. B, Vol. 79, 193402-193412, 2005.

14. Xi, S., H. Chen, T. Jiang, L. Ran, J. Huangfu, B. L. Wu, J. A. Kong, and M. Chen, "Experimental verification of reversed cherenkov radiation in left-handed metamaterial," Phys. Rev. Lett., Vol. 103, 194801, 2009.
doi:10.1103/PhysRevLett.103.194801

15. Averkov, Yu. O., A. V. Kats, and V. M. Yakovenko, "Electron beam excitation of left-handed surface electromagnetic waves at artificial interfaces," Phys. Rev. B, Vol. 72, 205110-205114, 2005.
doi:10.1103/PhysRevB.72.205110

16. Zhou, J., Z. Duan, Y. Zhang, M. Hu, W. Liu, P. Zhang, and S. Liu, "Numerical investigation of Cherenkov radiations emitted by an electron beam particle in isotropic double-negative metamaterials," Nuclear Instruments and Methods in Physics Research Section A, Vol. 654, No. 1, 475-480, 2011.
doi:10.1016/j.nima.2011.07.004

17. Duan, Z. Y., Y. S. Wang, X. T. Mao, W. X. Wang, and M. Chen, "Experimental demonstration of double-negative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.
doi:10.2528/PIER11090502

18. Zhu, L., F.-Y. Meng, F. Zhang, J. Fu, Q. Wu, X. M. Ding, and J. L.-W. Li, "An ultra-low loss split ring resonator by suppressing the electric dipole moment approach," Progress In Electromagnetics Progress In Electromagnetics, Vol. 137, 239-254, 2013.
doi:10.2528/PIER12121703

19. Duan, Z., C. Guo, and M. Chen, "Enhanced reversed Cherenkov radiation in a waveguide with double-negative metamaterials," Opt. Express, Vol. 19, 13825-13830, 2011.
doi:10.1364/OE.19.013825

20. García de Abajo, F. J., A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique, "Cherenkov effect as a probe of photonic nanostructures," Phys. Rev. Lett., Vol. 91, 143902, 2003.
doi:10.1103/PhysRevLett.91.143902

21. Brasch, V., M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, "Photonic chip-based optical frequency comb using soliton Cherenkov radiation,", DOI: 10.1126/science.aad4811, 2015.

22. Schwartz, T., G. Bartal, S. Fishman, and M. Segev, "Transport and Anderson localization in disordered two-dimensional photonic lattices," Nature, Vol. 446, 52-55, 2007.
doi:10.1038/nature05623

23. Wiersma, D. S., "The physics and applications of random lasers," Nat. Phys., Vol. 4, 359-367, 2008.
doi:10.1038/nphys971

24. Burlak, G. and Y. G. Rubo, "Mirrorless lasing from light emitters in percolating clusters," Phys. Rev. A, Vol. 92, 013812, 2015.
doi:10.1103/PhysRevA.92.013812

25. Carusotto, I., M. Artoni, G. C. La Rocca, and F. Bassani, "Slow group velocity and Cherenkov radiation," Phys. Rev. Lett., Vol. 87, 064801, 2001.
doi:10.1103/PhysRevLett.87.064801

26. Udagedara, I., M. Premaratne, I. D. Rukhlenko, H. T. Hattori, and G. P. Agrawal, "Unified perfectly matched layer for finite-difference time-domain modeling of dispersive media," Opt. Express, Vol. 7, 22179-21190, 2009.