1. Maity, S. and B. Gupta, "Cavity model analysis of 30˚-60˚-90˚ triangular microstrip antenna," AEU-International Journal of Electronics and Communications, Vol. 69, 923-932, 2015.
doi:10.1016/j.aeue.2015.02.012 Google Scholar
2. Singh, A., R. K. Gangwar, and B. K. Kanaujia, "Cavity backed annular ring microstrip antenna loaded with concentric circular patch," 8th European Conference onAntennas and Propagation (EuCAP), 2014, 2155-2158, 2014.
doi:10.1109/EuCAP.2014.6902235 Google Scholar
3. Khanna, A., D. K. Srivastava, and J. P. Saini, "Bandwidth enhancement of modified square fractal microstrip patch antenna using gap-coupling," Engineering Science and Technology, Vol. 18, 286-293, 2015. Google Scholar
4. Raval, F., Y. Kosta, and H. Joshi, "Reduced size patch antenna using complementary split ring resonator as defected ground plane," AEU-International Journal of Electronics and Communications, Vol. 69, 1126-1133, 2015.
doi:10.1016/j.aeue.2015.04.013 Google Scholar
5. Khan, Q. U. and M. B. Ihsan, "Higher order mode excitation for high gain microstrip patch antenna," AEU-International Journal of Electronics and Communications, Vol. 68, 1073-1077, 2014.
doi:10.1016/j.aeue.2014.05.009 Google Scholar
6. Lamine Tounsi, M. and M. C. Yagoub, "Efficient characterization of EMC shielding in anisotropic high-Tc superconducting devices for industrial applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 22, 116-123, 2012.
doi:10.1002/mmce.20590 Google Scholar
7. Benkouda, S., M. Amir, T. Fortaki, and A. Benghalia, "Dual-frequency behavior of stacked high Tc superconducting microstrip patches," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 32, 1350-1366, 2011.
doi:10.1007/s10762-011-9842-1 Google Scholar
8. Fortaki, T., A. Mounir, S. Benkouda, and A. Benghalia, "Study of high Tc superconducting microstrip antenna," PIERS Online, Vol. 5, No. 4, 346-349, 2009.
doi:10.2529/PIERS080905130151 Google Scholar
9. El-Ghazaly, S. M., R. B. Hammond, and T. Itoh, "Analysis of superconducting microwave structures: Application to microstrip lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, 499-508, 1992.
doi:10.1109/22.121725 Google Scholar
10. Benmeddour, F., C. Dumond, F. Benabdelaziz, and F. Bouttout, "Improving the performances of a high Tc superconducting circuslar microstrip antenna with multilayered configuration and anisotropic dielectrics," Progress In Electromagnetics Research C, Vol. 18, 169-183, 2011.
doi:10.2528/PIERC10102703 Google Scholar
11. Chebbara, F., S. Benkouda, and T. Fortaki, "Fourier transform domain analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 31, 821-832, 2010.
doi:10.1007/s10762-010-9641-0 Google Scholar
12. Bedra, S., T. Fortaki, A. Messai, and R. Bedra, "Spectral domain analysis of resonant characteristics of high Tc superconducting rectangular microstrip patch printed on isotropic or uniaxial anisotropic substrates," Wireless Personal Communications, Vol. 86, 495-511, 2016.
doi:10.1007/s11277-015-2941-x Google Scholar
13. Fortaki, T., L. Djouane, F. Chebara, and A. Benghalia, "Radiation of a rectangular microstrip patch antenna covered with a dielectric layer," International Journal of Electronics, Vol. 95, 989-998, 2008.
doi:10.1080/00207210802312070 Google Scholar
14. Zebiri, C., M. Lashab, and F. Benabdelaziz, "Asymmetrical effects of bi-anisotropic substrate-superstrate sandwich structure on patch resonator," Progress In Electromagnetics Research B, Vol. 49, 319-337, 2013.
doi:10.2528/PIERB13012115 Google Scholar
15. Biswas, M. and A. Mandal, "Experimental and theoretical investigation of resonance and radiation characteristics of superstrate loaded rectangular patch antenna," Microwave and Optical Technology Letters, Vol. 57, 791-799, 2015.
doi:10.1002/mop.28961 Google Scholar
16. Barkat, O. and A. Benghalia, "Radiation and resonant frequency of superconducting annular ring microstrip antenna on uniaxial anisotropic media," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 30, 1053-1066, 2009.
doi:10.1007/s10762-009-9526-2 Google Scholar
17. Bedra, S. and T. Fortaki, "Hankel transform domain analysis of covered circular microstrip patch printed on an anisotropic dielectric layer," Journal of Computational Electronics, Vol. 14, 747-753, 2015.
doi:10.1007/s10825-015-0708-y Google Scholar
18. Benkouda, S., A. Messai, M. Amir, S. Bedra, and T. Fortaki, "Characteristics of a high Tc superconducting rectangular microstrip patch on uniaxially anisotropic substrate," Physica C: Superconductivity, Vol. 502, 70-75, 2014.
doi:10.1016/j.physc.2014.04.015 Google Scholar
19. Da Silva, S., A. d'Assuncao, and J. Oliveira, "Analysis of high Tc superconducting microstrip antennas and arrays," International Conference in Microwave and Optoelectronics 1999, SBMO/IEEE MTT-S, APS and LEOS-IMOC'99, 243-246, 1999.
doi:10.1109/IMOC.1999.867100 Google Scholar
20. Bahl, I. J., P. Bhartia, and S. S. Stuchly, "Design of microstrip antennas covered with a dielectric layer," IEEE Transactions on Antennas and Propagation, Vol. 30, 314-318, 1982.
doi:10.1109/TAP.1982.1142766 Google Scholar
21. Richard, M. A., K. B. Bhasin, and P. C. Claspy, "Superconducting microstrip antennas: An experimental comparison of two feeding methods," IEEE Transactions on Antennas and Propagation, Vol. 41, 967-974, 1993.
doi:10.1109/8.237630 Google Scholar
22. Bouttout, F., F. Benabdelaziz, T. Fortaki, and D. Khedrouche, "Resonant frequency and bandwidth of a superstrate-loaded rectangular patch on a uniaxial anisotropic substrate," Communications in Numerical Methods in Engineering, Vol. 16, 459-473, 2000.
doi:10.1002/1099-0887(200007)16:7<459::AID-CNM343>3.0.CO;2-7 Google Scholar