Vol. 63
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-05-03
The Image Phase Approach for the Design of RF MEMS Shunt Switches
By
Progress In Electromagnetics Research C, Vol. 63, 173-182, 2016
Abstract
In this paper a new method to solve the microwave matching problem of MEMS shunt connected switches is proposed, as an extension of a previously presented approach based on the image parameter formulation. The image phase concept is used to impose the matching condition in the ``on'' state of the device, which is the most critical one. Two different configurations are investigated: a single basic cell and double basic cell topologies. For both of them an analytic modeling procedure is developed, and the equations for the synthesis of the structures are derived. In order to provide some examples, the method has been applied to a previously realized MEMS shunt variable capacitor.
Citation
Giancarlo Bartolucci Giorgio De Angelis Andrea Lucibello Romolo Marcelli Emanuela Proietti , "The Image Phase Approach for the Design of RF MEMS Shunt Switches," Progress In Electromagnetics Research C, Vol. 63, 173-182, 2016.
doi:10.2528/PIERC16020303
http://www.jpier.org/PIERC/pier.php?paper=16020303
References

1. Muldavin, J. B. and G. M. Rebeiz, "High-isolation CPW MEMS shunt switches — Part 1: Modeling," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 6, 1045-1052, Jun. 2000.
doi:10.1109/22.904743

2. Muldavin, J. B. and G. M. Rebeiz, "High-isolation CPW MEMS shunt switches — Part 2: Design," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 6, 1053-1056, Jun. 2000.
doi:10.1109/22.904744

3. Rizk, J., G. L. Tan, J. B. Muldavin, and G. M. Rebeiz, "High-isolation W-band MEMS switches," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 1, 10-12, Jan. 2001.
doi:10.1109/7260.905952

4. Rebeiz, G. M., RF MEMS: Theory, Design, and Technology, John Wiley & Sons, Hoboken, New Jersey, USA, 2003.

5. Zheng, W. B., Q. A. Huang, X. P. Liao, and F. X. Li, "RF MEMS membrane switches on GaAs substrates for X-band applications," Journal of Microelectromechanical Systems, Vol. 14, No. 3, 464-471, Jun. 2005.
doi:10.1109/JMEMS.2005.844846

6. Shen, Q. and N. Scott Barker, "Distributed MEMS tunable matching network using minimalcontact RF-MEMS varactors," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 6, 2646-2658, Jun. 2006.
doi:10.1109/TMTT.2006.872943

7. Domingue, F., S. Fouladi, A. B. Kouki, and R. R. Mansour, "Design methodology and optimization of distributed MEMS matching networks for low-microwave-frequency applications," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 12, 3030-3041, Dec. 2009.
doi:10.1109/TMTT.2009.2034218

8. Bartolucci, G., G. de Angelis, A. Lucibello, R. Marcelli, and E. Proietti, "Analytic modeling of RF MEMS shunt connected capacitive switches," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8–9, 1168-1179, 2012.
doi:10.1080/09205071.2012.710564

9. Bartolucci, G., "Image parameter modeling of analog traveling-wave phase shifters," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, No. 10, 1505-1509, Oct. 2002.
doi:10.1109/TCSI.2002.803364

10. Bartolucci, G., S. Catoni, F. Giacomozzi, R. Marcelli, B. Margesin, and D. Pochesci, "Realisation of distributed RF MEMS phase shifter with very low number of switches," Electronics Letters, Vol. 43, No. 23, 1290-1292, Nov. 2007.
doi:10.1049/el:20071679

11. Bartolucci, G., F. Giannini, and L. Scucchia, "Design considerations for the gate circuit in distributed amplifiers," IET Circuits, Devices and Systems, Vol. 4, No. 3, 181-187, May 2010.
doi:10.1049/iet-cds.2008.0319

12. Pozar, D. M., Microwave Engineering, 2 Ed., Wiley, New York, 1998.

13. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, Artech House, Norwood, MA, United State of America, 1980.

14. Puyal, V., D. Dragomirescu, C. Villeneuve, J. Ruan, P. Pons, and R. Plana, "Frequency scalable model for MEMS capacitive shunt switches at millimeter-wave frequencies," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 11, 2824-2833, Nov. 2009.
doi:10.1109/TMTT.2009.2032473

15. Bartolucci, G., R. Marcelli, S. Catoni, F. Giacomozzi, B.Margesin, V. Mulloni, and P. Farinelli, "An equivalent-circuit model for shunt-connected coplanar microelectromechanical — System switches for high frequency applications," Journal of Applied Physics, Vol. 104, 845141-845148, Oct. 2008.

16. Vaha-Heikkila, T., K. van Caekenberghe, J. Varis, J. Tuovinen, and G. M. Rebeiz, "RF MEMS impedance tuners for 6–24 GHz applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 17, No. 3, 265-278, May 2007.
doi:10.1002/mmce.20220

17. Halder, S., C. Palego, Z. Peng, J. C. M. Hwang, D. I. Forehand, and C. L. Goldsmith, "Compact RF model for transient characteristics of MEMS capacitive switches," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 1, 237-242, Jan. 2009.
doi:10.1109/TMTT.2008.2009039

18. Marcelli, R., G. Bartolucci, G. Minucci, B. Margesin, F. Giacomozzi, and F. Vitulli, "Lumped element modelling of coplanar series RF MEMS switches," Electronics Letters, Vol. 40, No. 20, 1272-1274, Sep. 2004.
doi:10.1049/el:20046490

19. Peroulis, D., S. P. Pacheco, and L. P. B. Katehi, "RF MEMS switches with enhanced powerhandling capabilities," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 59-68, Jan. 2004.
doi:10.1109/TMTT.2003.821234

20. Lucibello, A., E. Proietti, F. Giacomozzi, R. Marcelli, G. Bartolucci, and G. de Angelis, "RF MEMS switches fabrication by using SU-8 technology,” Microsystem Technologies," Microsystem Technologies, Vol. 19, No. 6, 929-936, Jun. 2013.
doi:10.1007/s00542-013-1753-8

21. Goyal, R., Monolithic Microwave Integrated Circuits: Technology and Design, Artech House, Norwood, MA, United State of America, 1989.

22. Simons, R., Coplanar Waveguide Circuits, Components, and Systems, Wiley, New York, 2001.
doi:10.1002/0471224758