Vol. 49
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-07-13
Millimeter-Wave Holographic Imaging Algorithm with Amplitude Corrections
By
Progress In Electromagnetics Research M, Vol. 49, 33-39, 2016
Abstract
Security detection is becoming extremely important with the growing threat of terrorism in recent years. An effective millimeter-wave (mmw) holographic imaging system is presented in this paper, which can be applied in nondestructive detection such as security detection in airport or other public locations. The imaging algorithm is an extension of the work before as it takes the decay of the amplitude with range into account. The experiment result of an imaging system working at 28-33 GHz frequencies indicates good quality of the algorithm.
Citation
Yu-Kun Zhu Ming-Hui Yang Liang Wu Yun Sun Xiao-Wei Sun , "Millimeter-Wave Holographic Imaging Algorithm with Amplitude Corrections," Progress In Electromagnetics Research M, Vol. 49, 33-39, 2016.
doi:10.2528/PIERM16050801
http://www.jpier.org/PIERM/pier.php?paper=16050801
References

1. Brooker, G., et al., "Millimeter wave 3D imaging for industrial applications," International Conference on Wireless Broadband and Ultra Wideband Communications, Vol. 27, 2007.

2. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field," Progress In Electromagnetics Research, Vol. 141, 517-535, 2013.
doi:10.2528/PIER13060702

3. Gonzalez-Valdes, B., Y. Alvarez-Lopez, J. A. Martinez-Lorenzo, F. Las Heras Andres, and C. M. Rappaport, "On the use of improved imaging techniques for the development of a multistatic three-dimensional millimeter-wave portal for personnel screening," Progress In Electromagnetics Research, Vol. 138, 83-98, 2013.
doi:10.2528/PIER13021405

4. Demirci, S., H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, "A study on millimeter-wave imaging of concealed objects: Application using back-projection algorithm," Progress In Electromagnetics Research, Vol. 128, 457-477, 2012.
doi:10.2528/PIER12050210

5. Appleby, R. and H. B. Wallace, "Standoff detection of weapons and contraband in the 100 GHz to 1 THz region," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 11, 2044-2056, 2007.
doi:10.1109/TAP.2007.908543

6. Zhang, L., Y. Hao, C. G. Parini, and J. Dupuy, "An experimental millimetre wave imaging system," Loughborough Antenna and Propagation Conf. (LAPC’08), Loughborough, UK, March 17-18, 2008.

7. Bjarnason, J. E., T. L. J. Chan, A. W. M. Lee, M. A. Celis, and E. R. Brown, "Millimeter-wave, terahertz, and mid-infrared transmission through common clothing," Applied Physics Letters, Vol. 85, No. 4, 519, 2004.
doi:10.1063/1.1771814

8. Guan, F.-H., et al., "Miniaturization Ka-band receiver used for passive millimeter wave imaging," J. Infrared Millim. Waves, Vol. 29, No. 4, 241-244, 2010.

9. Appleby, R., "Passive millimetre wave imaging and security," European Radar Conference, 275-278, Amsterdam, Netherlands, 2004.

10. Zhang, Y.-D., et al., "Passive millimeter-wave imaging using photonic processing technology," J. Infrared Millim. Waves, Vol. 30, No. 6, 551-555, 2011.
doi:10.3724/SP.J.1010.2011.00551

11. Shi, X. and M. H. Yang, "Development of passive millimeter wave imaging for concealed weapon detection indoors," Microwave and Optical Technology Letters, Vol. 25, No. 7, 1701-1706, 2014.
doi:10.1002/mop.28420

12. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Cylindrical millimeter-wave imaging technique and applications," Proceedings of SPIE, Vol. 6211, 2006.

13. McMakin, D. L., D. M. Sheen, J. W. Griffin, and W. M. Lechelt, "Extremely high-frequency holographic radar imaging of personnel and mail," Proceedings of SPIE, Vol. 6201, 2006.

14. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Near field imaging at microwave and millimeter wave frequencies," IEEE/MTT-S International, 169-1696, 2007.

15. Sheen, D. M., D. L. McMAkin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, 2001.
doi:10.1109/22.942570