Vol. 51
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-14
Retrieval of Refractivity Profile with Ground-Based Radio Occultation by Using an Improved Harmony Search Algorithm
By
Progress In Electromagnetics Research M, Vol. 51, 19-31, 2016
Abstract
A ground-based radio occultation (RO) technique is proposed to retrieve the atmospheric refractivity profile around a specific region at a higher sampling rate than conventional space-based RO techniques, making it more suitable for regional weather studies. A harmony search (HS) algorithm with ensemble consideration (HS-EC) based on atmospheric physics is proposed to retrieve the refractivity profile more efficiently without being trapped in suboptimal solutions. The highest altitude of profile is extended to 95 km from 40 km adopted in conventional ground-based RO techniques, leading to more accurate results.
Citation
Mu-Min Chiou Jean-Fu Kiang , "Retrieval of Refractivity Profile with Ground-Based Radio Occultation by Using an Improved Harmony Search Algorithm," Progress In Electromagnetics Research M, Vol. 51, 19-31, 2016.
doi:10.2528/PIERM16052505
http://www.jpier.org/PIERM/pier.php?paper=16052505
References

1. Liou, Y. A., A. G. Pavelyev, S. F. Liu, A. A. Pavelyev, N. Yen, C. Y. Huang, and C. J. Fong, "FORMOSAT-3/COSMIC GPS radio occultation mission: Preliminary results," IEEE Trans. Geosci. Remote Sensing, Vol. 45, No. 11, 3813-3826, Nov. 2007.
doi:10.1109/TGRS.2007.903365

2. Chiu, T. C., Y. A. Liou, W. H. Yeh, and C. Y. Huang, "NCURO data-retrieval algorithm in FORMOSAT-3 GPS radio-occultation mission," IEEE Trans. Geosci. Remote Sensing, Vol. 46, No. 11, 3395-3405, Nov. 2008.
doi:10.1109/TGRS.2008.2005038

3. Kursinski, E. R., et al., "Initial results of radio occultation observations of Earth’s atmosphere using the global positioning system," Science, Vol. 271, No. 5252, 1107-1110, Feb. 1996.
doi:10.1126/science.271.5252.1107

4. Xie, F., J. S. Haase, and S. Syndergaard, "Profiling the atmosphere using the airborne GPS radio occultation technique: A sensitivity study," IEEE Trans. Geosci. Remote Sensing, Vol. 46, No. 11, 3424-3435, 2008.
doi:10.1109/TGRS.2008.2004713

5. Healy, S. B., A. M. Jupp, and C. Marquardt, "Forecast impact experiment with GPS radio occultation measurements," Geophys. Res. Lett., Vol. 32, No. 3, L03804, Feb. 2005.
doi:10.1029/2004GL020806

6. Le Marshall, J., et al., "The application of radio occultation observations for climate monitoring and numerical weather prediction in the Australian region," Aust. Meteorol. Oceanog. J., Vol. 62, 323-334, Sep. 2012.

7. Yang, S. C., S. H. Chen, S. Y. Chen, C. Y. Huang, and C. S. Chen, "Evaluating the impact of the COSMIC RO bending angle data on predicting the heavy precipitation episode on June 16, 2008 during SoWMEX-IOP8," Month. Weather Rev., Vol. 142, No. 11, 4139-4163, 2014.
doi:10.1175/MWR-D-13-00275.1

8. Pelliccia, F., F. Pacifici, S. Bonafoni, P. Basili, N. Pierdicca, P. Ciotti, and W. J. Emery, "Neural networks for arctic atmosphere sounding from radio occultation data," IEEE Trans. Geosci. Remote Sensing, Vol. 49, No. 12, 4846-4855, Dec. 2011.
doi:10.1109/TGRS.2011.2153859

9. Zhang, K., T. Manning, S. Wu, W. Rohm, D. Silcock, and S. Choy, "Capturing the signature of severe weather events in Australia using GPS measurements," IEEE Selected Topics Appl. Earth Observ. Remote Sensing, Vol. 8, No. 4, 1839-1847, Apr. 2015.
doi:10.1109/JSTARS.2015.2406313

10. Norman, R. J., J. Le Marshall, W. Rohm, B. A. Carter, G. Kirchengast, S. Alexander, C. Liu, and K. Zhang, "Simulating the impact of refractive transverse gradients resulting from a severe troposphere weather event on GPS signal propagation," IEEE Selected Topics Appl. Earth Observ. Remote Sensing, Vol. 8, No. 1, 418-424, Jan. 2015.
doi:10.1109/JSTARS.2014.2344091

11. Chou, Y. H. and J. F. Kiang, "Ducting and turbulence effects on radio-wave propagation in an atmospheric boundary layer," Progress In Electromagnetics Research B, Vol. 60, 301-315, 2014.
doi:10.2528/PIERB14062201

12. Sokolovskiy, S., "Effect of super refraction on inversions of radio occultation signals in the lower troposphere," Radio Science, Vol. 38, No. 3, 24-1-14, Jun. 2003.
doi:10.1029/2002RS002728

13. Von Engeln, A. and J. Teixeira, "A ducting climatology derived from the European centre for medium-range weather forecasts global analysis fields," J. Geophys. Res. Atmos., Vol. 109, No. D18, D18104, Sep. 2004.
doi:10.1029/2003JD004380

14. Zuffada, C., G. A. Hajj, and E. R. Kursinski, "A novel approach to atmospheric profiling with a mountain-based or airborne GPS receiver," J. Geophys. Res. Atmos., Vol. 104, No. D20, 24435-24447, Oct. 1999.
doi:10.1029/1999JD900766

15. Flores, A., J. V.-G. De Arellano, L. P. Gradinarsky, and A. Rius, "Tomography of the lower troposphere using a small dense network of GPS receivers," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 2, 439-447, Feb. 2001.
doi:10.1109/36.905252

16. Nilsson, T. and L. Gradinarsky, "Water vapor tomography using GPS phase observations: Simulation results," IEEE Trans. Geosci. Remote Sensing, Vol. 44, No. 10, 2927-2941, Oct. 2006.
doi:10.1109/TGRS.2006.877755

17. Lin, L. K., Z. W. Zhao, Y. R. Zhang, and Q. L. Zhu, "Tropospheric refractivity profiling based on refractivity profile model using single ground-based global positioning system," IET Radar Sonar Navig., Vol. 5, No. 1, 7-11, 2011.
doi:10.1049/iet-rsn.2009.0167

18. Wu, X., X. Wang, and D. Lü, "Retrieval of vertical distribution of tropospheric refractivity through ground-based GPS observation," Adv. Atmos. Sci., Vol. 31, No. 1, 37-47, Jan. 2014.
doi:10.1007/s00376-013-2215-z

19. Sokolovskiy, S. V., C. Rocken, and A. R. Lowry, "Use of GPS for estimation of bending angles of radio waves at low elevations," Radio Science, Vol. 36, No. 3, 473-482, May 2001.
doi:10.1029/2000RS002541

20. Lowry, A. R., C. Rocken, S. V. Sokolovskiy, and K. D. Anderson, "Vertical profiling of atmospheric refractivity from ground-based GPS," Radio Science, Vol. 37, No. 3, 13-1-19, Jun. 2002.
doi:10.1029/2000RS002565

21. Wang, H. G., Z. S. Wu, S. F. Kang, and Z. W. Zhao, "Monitoring the marine atmospheric refractivity profiles by ground-based GPS occultation," IEEE Geosci. Remote Sensing Lett., Vol. 10, No. 4, 962-965, Jul. 2013.
doi:10.1109/LGRS.2012.2227294

22. Nievergelt, J., "Exhaustive search, combinatorial optimization and enumeration: Exploring the potential of raw computing power," Sofsem 2000: Theory and Practice of Informatics, 18-35, Springer, 2000.
doi:10.1007/3-540-44411-4_2

23. Rocken, C., Y. H. Kuo, W. S. Schreiner, D. Hunt, S. Sokolovskiy, and C. McCormick, "COSMIC system descriptions," Terr. Atmos. Ocean. Sci., Vol. 11, No. 1, 21-52, Mar. 2000.

24. Geem, Z. W., Recent Advances in Harmony Search Algorithm, 1-10, Springer, 2010.
doi:10.1007/978-3-642-04317-8_1

25. Gaikovich, K. P. and M. I. Sumin, "Reconstruction of the altitude profiles of the refractive index, pressure, and temperature of the atmosphere from observations of astronomical refraction," Izvestiya, Atmos. Ocean. Phys., Vol. 22, 710-715, 1986.

26. Kirchengast, G., J. Hafner, and W. Poetzi, "The CIRA86aQ_UoG model: An extension of the CIRA-86 monthly tables including humidity tables and a Fortran95 global moist air climatology model," Euro. Space Agency, IMG/UoG Tech. Rep., Vol. 8. 1999.

27. Nafisi, V., L. Urquhart, M. C. Santos, F. G. Nievinski, J. Bohm, D. D. Wijaya, H. Schuh, A. A. Ardalan, T. Hobiger, and R. Ichikawa, "Comparison of ray-tracing packages for troposphere delays," IEEE Trans. Geosci. Remote Sensing, Vol. 50, No. 2, 469-481, 2012.
doi:10.1109/TGRS.2011.2160952

28. Dee, D. P., et al., "The ERA-interim reanalysis: Configuration and performance of the data assimilation system," Q. J. R. Meterorol. Soc., Vol. 137, 533-597, Apr. 2011.

29. Hedin, A. E., "Extension of the MSIS thermosphere model into the middle and lower atmosphere," J. Geophys. Res. Space Phys., Vol. 96, No. A2, 1159-1172, Feb. 1991.
doi:10.1029/90JA02125

30. Yang, S.-H. and J.-F. Kiang, "Optimization of sparse linear arrays using harmony search algorithms," IEEE Trans. Antennas Propagat., Vol. 63, No. 11, 4732-4738, Nov. 2015.
doi:10.1109/TAP.2015.2476518

31. Jacobson, M. Z., Fundamental of Atmospheric Modeling, Cambridge Univ. Press, 2005.
doi:10.1017/CBO9781139165389

32. Ratnaweera, A., S. Halgamuge, and H. C. Watson, "Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients," IEEE Trans. Evolution. Comput., Vol. 8, No. 3, 240-255, Jun. 2004.
doi:10.1109/TEVC.2004.826071

33. Hajj, G. A., E. R. Kursinski, L. J. Romans, W. I. Bertiger, and S. S. Leroy, "A technical description of atmospheric sounding by GPS occultation," J. Atmos. Solar-Terr. Phys., Vol. 64, No. 4, 451-469, 2002.
doi:10.1016/S1364-6826(01)00114-6

34. Geem, Z. W., "Optimal cost design of water distribution networks using harmony search," Eng. Optim., Vol. 38, No. 03, 259-277, 2006.
doi:10.1080/03052150500467430