Vol. 52
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-11-14
Analysis of Microwave Scattering from a Realistic Human Head Model for Brain Stroke Detection Using Electromagnetic Impedance Tomography
By
Progress In Electromagnetics Research M, Vol. 52, 45-56, 2016
Abstract
Brain stroke incidences have arisen at an alarming rate over the past few decades. These strokes are not only life threatening, but also bring with them a very poor prognosis. There is a need to investigate the onset of stroke symptoms in a matter of few hours by the doctor. To address this, Electromagnetic Impedance Tomography (EMIT) employing microwave imaging technique is an emerging, cost-effective and portable brain stroke diagnostic modality. It has the potential for rapid stroke detection, classification and continuous brain monitoring. EMIT can supplement current brain imaging and diagnostic tools (CT, MRI or PET) due to its safe, non-ionizing and non-invasive features. It relies on the significant contrast between dielectric properties of the normal and abnormal brain tissues. In this paper, a comparison of microwave signals scattering from an anatomically realistic human head model in the presence and absence of brain stroke is presented. The head model also incorporates the heterogenic and frequency-dispersive behavior of brain tissues for the simulation setup. To study the interaction between microwave signals and the multilayer structure of head, a forward model has been formulated and evaluated using Finite Element Method (FEM). Specific Absorption Rate (SAR) analysis is also performed to comply with safety limits of the transmitted signals for minimum ionizing effects to brain tissues, while ensuring maximum signal penetration into the head.
Citation
Awais Munawar Qureshi, Zartasha Mustansar, and Adnan Maqsood, "Analysis of Microwave Scattering from a Realistic Human Head Model for Brain Stroke Detection Using Electromagnetic Impedance Tomography," Progress In Electromagnetics Research M, Vol. 52, 45-56, 2016.
doi:10.2528/PIERM16081303
References

1. Stroke (Cerebrovascular Accident), Hemorrhagic, Discharge Information, [Online], , , Available: http://www.summitmedicalgroup.com/library/adult_care/ac-strokehemorrhagic_dc/.
doi:10.1016/S0140-6736(05)66755-4

2. Feigin, V. L., "Stroke epidemiology in the developing world," The Lancet, Vol. 365, 2160-2161, 2005.

3. The Internet Stroke Center, [Online], , , Available: http://www.strokecenter.org/.

4. Khan, F., I. J. Baguley, and I. D. Cameron, "4: Rehabilitation after traumatic brain injury," Med. J. Aust., Vol. 178, 290-5, Mar. 17, 2003.
doi:10.1109/PROC.1982.12341

5. Lin, J. C. and M. J. Clarke, "Microwave imaging of cerebral edema," Proceedings of the IEEE, Vol. 70, 523-524, 1982.

6. Haddad, W., J. Chang, T. Rosenbury, G. Dallum, P. Welsh, D. Scott, et al. "Microwave hematoma detector for the rapid assessment of head injuries," Lawrence Livermore National Laboratory Technical Report UCRL-ID, Vol. 137901, 2000.

7. Paulson, C. N., J. T. Chang, C. E. Romero, J.Watson, F. J. Pearce, and N. Levin, "Ultra-wideband radar methods and techniques of medical sensing and imaging," Optics East 2005, 60070L-60070L-12, 2005.
doi:10.1155/2008/254830

8. Semenov, S. Y. and D. R. Corfield, "Microwave tomography for brain imaging: Feasibility assessment for stroke detection," International Journal of Antennas and Propagation, Vol. 2008, 1-8, 2008.

9. Ireland, D. and M. Bialkowski, "Feasibility study on microwave stroke detection using a realistic phantom and the FDTD method," Asia-Pacific Microwave Conference 2010, 1-4, 2010.
doi:10.1118/1.597290

10. Zubal, I. G., C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B. Hoffer, "Computerized three-dimensional segmented human anatomy," Medical Physics, Vol. 21, 299-302, 1994.
doi:10.1088/0266-5611/26/11/115010

11. Zakaria, A., C. Gilmore, and J. LoVetri, "Finite-element contrast source inversion method for microwave imaging," Inverse Problems, Vol. 26, 115010, 2010.
doi:10.2528/PIERM11082907

12. Ireland, D. and M. E. Bialkowski, "Microwave head imaging for stroke detection," Progress In Electromagnetics Research M, Vol. 21, 163-175, 2011.
doi:10.1002/mop.25941

13. Bialkowski, M. and Y. Wang, "UWB cylindrical microwave imaging system employing virtual array antenna concept for background effect removal," Microwave and Optical Technology Letters, Vol. 53, 1100-1104, 2011.

14. Bialkowski, M. E., "Ultra wideband microwave system with novel image reconstruction strategies for breast cancer detection," 2010 European Microwave Conference (EuMC), 537-540, 2010.
doi:10.1109/7260.915627

15. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, 130-132, 2001.
doi:10.1109/MWSYM.2010.5515064

16. Bialkowski, M. E., Y. Wang, A. Abu Bakar, and W. C. Khor, "Novel image reconstruction algorithm for a UWB cylindrical microwave imaging system," 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), 477-480, 2010.
doi:10.2528/PIERB12022006

17. Scapaticci, R., L. Di Donato, I. Catapano, and L. Crocco, "A feasibility study on microwave imaging for brain stroke monitoring," Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012.

18. Jalilvand, M., X. Li, and T. Zwick, "A model approach to the analytical analysis of stroke detection using UWB radar," 2013 7th European Conference on Antennas and Propagation (EuCAP), 1555-1559, 2013.

19. Fhager, A., Y. Yu, T. McKelvey, and M. Persson, "Stroke diagnostics with a microwave helmet," 2013 7th European Conference on Antennas and Propagation (EuCAP), 845-846, 2013.
doi:10.1109/TIM.2013.2277562

20. Mohammed, B. J., A. M. Abbosh, S. Mustafa, and D. Ireland, "Microwave system for head imaging," IEEE Transactions on Instrumentation and Measurement, Vol. 63, 117-123, 2014.

21. Abbosh, A., "Microwave systems for head imaging: Challenges and recent developments," 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 2013.
doi:10.1109/LAWP.2013.2255095

22. Mustafa, S., B. Mohammed, and A. Abbosh, "Novel preprocessing techniques for accurate microwave imaging of human brain," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 460-463, 2013.

23. Mohammed, B., A. Abbosh, and D. Ireland, "Stroke detection based on variations in reflection coefficients of wideband antennas," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012.
doi:10.1109/ICEAA.2013.6632455

24. Mobashsher, A. T., B. Mohammed, A. Abbosh, and S. Mustafa, "Detection and differentiation of brain strokes by comparing the reflection phases with wideband unidirectional antennas," 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), 1283-1285, 2013.
doi:10.1109/EMBC.2013.6610023

25. Priyadarshini, N. and E. Rajkumar, "Finite element modeling of scattered electromagnetic waves for stroke analysis," 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2404-2407, 2013.
doi:10.1109/TMTT.2014.2342669

26. Mobashsher, A. T., A. M. Abbosh, and Y. Wang, "Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, 1826-1836, 2014.
doi:10.1109/AUSMS.2014.7017347

27. Mobashsher, A. T. and A. Abbosh, "Microwave imaging system to provide portable-low-powered medical facility for the detection of intracranial hemorrhage," 2014 1st Australian Microwave Symposium (AMS), 23-24, 2014.
doi:10.1371/journal.pone.0152351

28. Mobashsher, A., K. Bialkowski, A. Abbosh, and S. Crozier, "Design and experimental evaluation of a non-invasive microwave head imaging system for intracranial haemorrhage detection," PloS One, Vol. 11, e0152351, 2016.

29. Zubal Phantom Data, [Online], , , Available: http://noodle.med.yale.edu/phantom/getdata.htm.
doi:10.1063/1.1750906

30. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics I. Alternating current characteristics," The Journal of Chemical Physics, Vol. 9, 341-351, 1941.
doi:10.1088/0031-9155/41/11/001

31. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine and Biology, Vol. 41, 2231, 1996.
doi:10.1088/0031-9155/41/11/002

32. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, 2251, 1996.
doi:10.1088/0031-9155/41/11/003

33. Gabriel, S., R. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, 2271, 1996.
doi:10.1088/0031-9155/41/11/003

34. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies,", DTIC Document, 1996.
doi:10.1088/0031-9155/54/16/002

35. Gabriel, C., A. Peyman, and E. H. Grant, "Electrical conductivity of tissue at frequencies below 1 MHz," Physics in Medicine and Biology, Vol. 54, 4863-78, Aug. 21, 2009.

36. Andreuccetti, D., R. Fossi, and C. Petrucci, "Dielectric properties of body tissues," Applied Physics - Italian National Research Council, Florence, Italy, 2002, Online: http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.
doi:10.1109/TAP.2013.2242037

37. Ireland, D. and A. Abbosh, "Modeling human head at microwave frequencies using optimized Debye models and FDTD method," IEEE Transactions on Antennas and Propagation, Vol. 61, 2352-2355, 2013.
doi:10.1109/TAP.2013.2296323

38. Mustafa, S., A. M. Abbosh, and P. T. Nguyen, "Modeling human head tissues using fourth-order Debye model in convolution-based three-dimensional finite-difference time-domain," IEEE Transactions on Antennas and Propagation, Vol. 62, 1354-1361, 2014.
doi:10.1002/9780470602492

39. Pastorino, M., Microwave Imaging, Vol. 208, John Wiley & Sons, 2010.
doi:10.1109/TAP.2010.2048860

40. Klemm, M., J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Transactions on Antennas and Propagation, Vol. 58, 2337-2344, 2010.
doi:10.1109/8.121595

41. Joachimowicz, N., C. Pichot, and J.-P. Hugonin, "Inverse scattering: An iterative numerical method for electromagnetic imaging," IEEE Transactions on Antennas and Propagation, Vol. 39, 1742-1753, 1991.
doi:10.1109/MAES.2005.1576101

42. Davidson, D. B., "Computational Electromagnetics for RF & microwave engineering," IEEE Aerospace and Electronic Systems Magazine, Vol. 20, 27, 2005.
doi:10.1088/0031-9155/52/18/015

43. Semenov, S., J. Kellam, P. Althausen, T. Williams, A. Abubakar, A. Bulyshev, et al. "Microwave tomography for functional imaging of extremity soft tissues: Feasibility assessment," Physics in Medicine and Biology, Vol. 52, 5705, 2007.
doi:10.1049/iet-map.2013.0054

44. Ireland, D., K. Bialkowski, and A. Abbosh, "Microwave imaging for brain stroke detection using born iterative method," IET Microwaves, Antennas & Propagation, Vol. 7, 909-915, 2013.
doi:10.2528/PIER13080706

45. Zakaria, A., I. Jeffrey, and J. LoVetri, "Full-vectorial parallel finite-element contrast source inversion method," Progress In Electromagnetics Research, Vol. 142, 463-483, 2013.

46. Morega, M. and A. M. Morega, "Computed SAR in human head for the assessment of exposure from different phone device antennas," Environment Engineering and Management Journal, Vol. 10, 527-533, 2011.
doi:10.1016/j.ijheatmasstransfer.2011.09.027

47. Wessapan, T., S. Srisawatdhisukul, and P. Rattanadecho, "Specific absorption rate and temperature distributions in human head subjected to mobile phone radiation at different frequencies," International Journal of Heat and Mass Transfer, Vol. 55, 347-359, 2012.
doi:10.1002/dac.2322

48. Yasin Citkaya, A. and S. Selim Seker, "FEM modeling of SAR distribution and temperature increase in human brain from RF exposure," International Journal of Communication Systems, Vol. 25, 1450-1464, 2012.

49. Abdulrazzaq, S. A. and A. P. D. J. S. Aziz, "SAR simulation in human head exposed to RF signals and safety precautions," Int. J. Comput. Sci. Eng. Technol., Vol. 3, 334-340, 2013.

50. Sallomi, A., "A theoretical approach for SAR calculation in human head exposed to RF signals," Journal of Engineering and Development, Vol. 16, 2012.

51. "IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz," IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991), 1-238, 2006.

52. "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, 494-522, 1998.