Vol. 51
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-20
Modeling of a Ku-Band Rectangular Ferrite-Loaded Waveguide Based on Left-Handed Metamaterial
By
Progress In Electromagnetics Research M, Vol. 51, 71-81, 2016
Abstract
This paper presents the modeling and simulation of a new rectangular ferrite-loaded waveguide based on left-handed metamaterial (LHM) unit cells at Ku-band. The structure has an 8×8 unit cell configuration, whose negative permittivity and negative permeability are achieved by metallic wires array and ferrite medium, respectively. The equivalent circuit model and transmission parameter matrix for the unit cell are presented based on microwave two-port network theory. The operating frequency is in the TE10 single mode range at 12.97-15.90 GHz where magnetic and electric resonances are coupled simultaneously. The finite-element method (FEM) based simulation software HFSS has been used to set original model and optimized model with vacuum layers for decoupling. Analysis of 3D electromagnetic waves propagation and scattering parameters demonstrate the backward wave property of the optimized waveguide. Negative propagation constant and negative index of refraction are calculated based ona method for extracting effective parameters of LHM. The proposed structure has scalability, double negative, and broad-band operation characteristics in the electromagnetic paradigm.
Citation
Junfeng Yao, Fan Yang, Chunli Li, Degang Gan, Bing Gao, and Ammad Jadoon, "Modeling of a Ku-Band Rectangular Ferrite-Loaded Waveguide Based on Left-Handed Metamaterial," Progress In Electromagnetics Research M, Vol. 51, 71-81, 2016.
doi:10.2528/PIERM16082301
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Uspekhi., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699        Google Scholar

2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773        Google Scholar

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002        Google Scholar

4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184        Google Scholar

5. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with left-handed metamaterials," IEEE Trans. Antennas Propag., Vol. 57, 331-338, 2009.
doi:10.1109/TAP.2008.2011230        Google Scholar

6. Dong, Y. and T. Itoh, "Miniaturized substrate integrated waveguide slot antennas based on negative order resonance," IEEE Trans. Antennas Propag., Vol. 58, 3856-3864, 2010.
doi:10.1109/TAP.2010.2078449        Google Scholar

7. Nicholson, K. J., W. S. T. Rowe, P. J. Callus, and K. Ghorbani, "Split-ring resonator loading for the slotted waveguide antenna stiffened structure," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 1524-1527, 2011.
doi:10.1109/LAWP.2011.2181474        Google Scholar

8. Dong, Y. and T. Itoh, "Composite right/left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures," IEEE Trans. Antennas Propag., Vol. 59, 767-775, 2011.
doi:10.1109/TAP.2010.2103025        Google Scholar

9. Daliri, A., W. S. T. Rowe, and K. Ghorbani, "Split-ring slot in the broad-wall of a rectangular waveguide," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 991-994, 2014.
doi:10.1109/LAWP.2014.2325934        Google Scholar

10. Ullah, M. H., M. J. Uddin, T. A. Latef, W. N. L. Mahadi, M. R. Ahsan, and M. T. Islam, "Constitutive parameter analysis of left-handed DSSRR metamaterial for homogeneous infinite slab," IET Microwaves Antennas Propag., Vol. 9, 1740-1746, 2015.
doi:10.1049/iet-map.2015.0361        Google Scholar

11. Kodera, T. and C. Caloz, "Integrated leaky-wave antenna-duplexer/diplexer using CRLH uniform ferrite-loaded open waveguide," IEEE Trans. Antennas Propag., Vol. 58, 2508-2514, 2010.
doi:10.1109/TAP.2010.2050449        Google Scholar

12. Islam, S. S., M. R. I. Faruque, and M. T. Islam, "A new double negative metamaterial for C-band microwave applications," Appl. Phys. A, Vol. 116, 723-733, 2014.
doi:10.1007/s00339-014-8549-2        Google Scholar

13. Akhter, Z. and M. J. Akhtar, "Design of unity index flat LHM super resolution lens for near field millimeter-wave imaging applications," IEEE CAMA, 2014.        Google Scholar

14. Chui, S. T. and L. Hu, "Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites," Phys. Rev. B, Vol. 65, 144407-1-6, 2002.
doi:10.1103/PhysRevB.65.144407        Google Scholar

15. Dewar, G., "The applicability of ferrimagnetic hosts to nanostructured negative index of refraction (left-handed) materials," Proc. SPIE Int. Soc. Opt. Eng., Vol. 4806, 156-166, 2002.        Google Scholar

16. Ueda, T. and M. Tsutsumi, "Left-handed transmission characteristics of rectangular waveguides periodically loaded with ferrite," IEEE Trans. Magn., Vol. 41, 3532-3537, 2005.
doi:10.1109/TMAG.2005.854463        Google Scholar

17. He, Y., P. He, N. Sun, V. G. Harris, and C. Vittoria, "Role of Ferrites in negative index metamaterials," IEEE Trans. Magn., Vol. 42, 2852-2854, 2006.
doi:10.1109/TMAG.2006.879146        Google Scholar

18. Dechant, A. and M. Okoniewski, "Broadband double negative material from ferrite-loaded metallic waveguides," Electron. Lett., Vol. 42, 4-5, 2006.
doi:10.1049/el:20063666        Google Scholar

19. Zedler, M., C. Caloz, and P. Russer, "A 3-D isotropic left-handed metamaterial based on the rotated transmission-line matrix (TLM) scheme," IEEE Trans. Microwave Theory Tech., Vol. 55, 2930-2941, 2007.
doi:10.1109/TMTT.2007.909608        Google Scholar

20. Zhou, H., C. Wang, and H. Peng, "A novel double-incidence and multi-band left-handed metamaterials composed of double Z-shaped structure," J. Mater. Sci.: Mater. Electron., Vol. 27, 2534-2544, 2016.
doi:10.1007/s10854-015-4056-2        Google Scholar

21. Paulotto, S., P. Baccarelli, F. Frezza, and D. R. Jackson, "Full-wave modal dispersion analysis and broadside optimization for a class of microstrip CRLH leaky-wave antennas," IEEE Trans. Microwave Theory Tech., Vol. 56, 2826-2837, 2008.
doi:10.1109/TMTT.2008.2007333        Google Scholar

22. Ma, X., C. Huang, W. Pan, B. Zhao, J. Cui, and X. Luo, "A dual circularly polarized horn antenna in Ku-band based on chiral metamaterial," IEEE Trans. Antennas Propag., Vol. 62, 2307-2311, 2014.
doi:10.1109/TAP.2014.2301841        Google Scholar

23. Carignan, L., A. Yelon, D. Menard, and C. Caloz, "Ferromagnetic nanowire metamaterials: Theory and applications," IEEE Trans. Microwave Theory Tech., Vol. 59, 2568-2586, 2011.
doi:10.1109/TMTT.2011.2163202        Google Scholar