1. Tong, X. C., Advanced Materials and Design for Electromagnetic Interference Shielding, Taylor & Francis, 2008.
doi:10.1201/9781420073591
2. Xu, P., X. Han, and M. Wang, "Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique," The Journal of Physical Chemistry C, Vol. 111, 5866-5870, 2007.
doi:10.1021/jp068955c Google Scholar
3. Liu, J., P. Liu, X. Zhang, D. Pan, P. Zhang, and M. Zhang, "Synthesis and properties of single domain sphere-shaped barium hexa-ferrite nano powders via an ultrasonic-assisted co-precipitation route,", Ultrasonics Sonochemistry, 2014. Google Scholar
4. Hibst, H., "Hexagonal ferrites from melts and aqueous solutions, magnetic recording materials," Angewandte Chemie International Edition in English, Vol. 21, 270-282, 1982.
doi:10.1002/anie.198202701 Google Scholar
5. Lotgering, F. K., P. R. Locher, and R. P. van Stapele, "Anisotropy of hexagonal ferrites with M, W and Y structures containing Fe3+ and Fe2+ as magnetic ions," Journal of Physics and Chemistry of Solids, Vol. 41, 481-487, 1980.
doi:10.1016/0022-3697(80)90178-X Google Scholar
6. Albanese, G., A. Deriu, and S. Rinaldi, "Sublattice magnetization and anisotropy properties of Ba3Co2Fe24O41 hexagonal ferrite," Journal of Physics C: Solid State Physics, Vol. 9, 1313, 1976.
doi:10.1088/0022-3719/9/7/023 Google Scholar
7. Chiang, J.-C. and A. G. MacDiarmid, "`Polyaniline': Protonic acid doping of the emeraldine form to the metallic regime," Synthetic Metals, Vol. 13, 193-205, 1986.
doi:10.1016/0379-6779(86)90070-6 Google Scholar
8. Rout, T. K., G. Jha, A. K. Singh, N. Bandyopadhyay, and O. N. Mohanty, "Development of conducting polyaniline coating: A novel approach to superior corrosion resistance," Surface and Coatings Technology, Vol. 167, 16-24, 2003.
doi:10.1016/S0257-8972(02)00862-9 Google Scholar
9. McAndrew, T. P., S. A. Miller, A. G. Gilicinski, and L. M. Robeson, "Poly (aniline) in corrosion resistant coatings," American Chemical Society, Washington, DC, United States, 1996. Google Scholar
10. Han, M. and L. Deng, "High frequency properties of carbon nanotubes and their electromagnetic wave absorption properties," Carbon Nanotubes Applications on Electron Devices, J. M. Marulanda, editor, InTech, 2011. Google Scholar
11. Qin, F. and C. Brosseau, "A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles," Journal of Applied Physics, Vol. 111, 061301, 2012.
doi:10.1063/1.3688435 Google Scholar
12. Li, Y., Y. Huang, S. Qi, L. Niu, Y. Zhang, and Y. Wu, "Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite," Applied Surface Science, Vol. 258, 3659-3666, 2012.
doi:10.1016/j.apsusc.2011.12.001 Google Scholar
13. Goldman, A., Modern Ferrite Technology, Springer Science & Business Media, 2006.
14. Rana, U., S. Mondal, J. Sannigrahi, P. K. Sukul, M. A. Amin, S. Majumdar, et al. "Aromatic bi-, tri- and tetracarboxylic acid doped polyaniline nanotubes: Effect on morphologies and electrical transport properties," Journal of Materials Chemistry C, Vol. 2, 3382-3389, 2014.
doi:10.1039/c3tc32152e Google Scholar
15. Nalwa, H. S., Handbook of Organic Conductive Molecules and Polymers, Volume 4, Conductive Polymers: Transport, Photophysics and Applications, Wiley, 1997.
16. Saini, P., V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, "Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4-18.0 GHz range," Synthetic Metals, Vol. 161, 1522-1526, 2011.
doi:10.1016/j.synthmet.2011.04.033 Google Scholar
17. Phan, C. H., M. Mariatti, and Y. H. Koh, "Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers," Journal of Magnetism and Magnetic Materials, Vol. 401, 472-478, 2016.
doi:10.1016/j.jmmm.2015.10.067 Google Scholar
18. Wang, Z., G. Wei, and G. L. Zhao, "Enhanced electromagnetic wave shielding effectiveness of Fe doped carbon nanotubes/epoxy composites," Applied Physics Letters, Vol. 103, 183109, 2013.
doi:10.1063/1.4828356 Google Scholar