Vol. 52
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-11-29
Electromagnetic Interference (EMI) Shielding Performance of the Ternary Composite Based on BaFe 12O19, MWCNT and PANI at the Ku-Band
By
Progress In Electromagnetics Research M, Vol. 52, 111-118, 2016
Abstract
A ternary composite, based on the M-type hexagonal barium ferrite, BaFe12O19, conducting polymer, polyaniline (PANI), carbon allotrope, and multi-walled carbon nanotube (MWCNT), was prepared through a facile in-situ polymerization process. The structural properties of the synthesized composite were characterized through XRD and FESEM analysis. PANI particles were found to be able to coat on BaFe12O19 and MWCNT surfaces. The increased MWCNT wt% loading within the composite resulted in the increase of the electrical conductivity with values as high as 2.0320 S/m for sample PBM5 (25wt% MWCNT). The composite inherited the salient properties of its respective components to achieve optimum values of shielding effectiveness. The highest value of SEA recorded was 42.37 dB at 17.60 GHz. The significantly larger magnitudes of SEA than SER suggest that the mechanism of shielding for all synthesized composites are through absorption.
Citation
Muhammad Hanif Zahari Beh Hoe Guan Ee Meng Cheng Muhammad Farham Che Mansor Hazliza A. Rahim , "Electromagnetic Interference (EMI) Shielding Performance of the Ternary Composite Based on BaFe 12O19, MWCNT and PANI at the Ku-Band," Progress In Electromagnetics Research M, Vol. 52, 111-118, 2016.
doi:10.2528/PIERM16100402
http://www.jpier.org/PIERM/pier.php?paper=16100402
References

1. Tong, X. C., Advanced Materials and Design for Electromagnetic Interference Shielding, Taylor & Francis, 2008.
doi:10.1201/9781420073591

2. Xu, P., X. Han, and M. Wang, "Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique," The Journal of Physical Chemistry C, Vol. 111, 5866-5870, 2007.
doi:10.1021/jp068955c

3. Liu, J., P. Liu, X. Zhang, D. Pan, P. Zhang, and M. Zhang, "Synthesis and properties of single domain sphere-shaped barium hexa-ferrite nano powders via an ultrasonic-assisted co-precipitation route,", Ultrasonics Sonochemistry, 2014.

4. Hibst, H., "Hexagonal ferrites from melts and aqueous solutions, magnetic recording materials," Angewandte Chemie International Edition in English, Vol. 21, 270-282, 1982.
doi:10.1002/anie.198202701

5. Lotgering, F. K., P. R. Locher, and R. P. van Stapele, "Anisotropy of hexagonal ferrites with M, W and Y structures containing Fe3+ and Fe2+ as magnetic ions," Journal of Physics and Chemistry of Solids, Vol. 41, 481-487, 1980.
doi:10.1016/0022-3697(80)90178-X

6. Albanese, G., A. Deriu, and S. Rinaldi, "Sublattice magnetization and anisotropy properties of Ba3Co2Fe24O41 hexagonal ferrite," Journal of Physics C: Solid State Physics, Vol. 9, 1313, 1976.
doi:10.1088/0022-3719/9/7/023

7. Chiang, J.-C. and A. G. MacDiarmid, "`Polyaniline': Protonic acid doping of the emeraldine form to the metallic regime," Synthetic Metals, Vol. 13, 193-205, 1986.
doi:10.1016/0379-6779(86)90070-6

8. Rout, T. K., G. Jha, A. K. Singh, N. Bandyopadhyay, and O. N. Mohanty, "Development of conducting polyaniline coating: A novel approach to superior corrosion resistance," Surface and Coatings Technology, Vol. 167, 16-24, 2003.
doi:10.1016/S0257-8972(02)00862-9

9. McAndrew, T. P., S. A. Miller, A. G. Gilicinski, and L. M. Robeson, "Poly (aniline) in corrosion resistant coatings," American Chemical Society, Washington, DC, United States, 1996.

10. Han, M. and L. Deng, "High frequency properties of carbon nanotubes and their electromagnetic wave absorption properties," Carbon Nanotubes Applications on Electron Devices, J. M. Marulanda, editor, InTech, 2011.

11. Qin, F. and C. Brosseau, "A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles," Journal of Applied Physics, Vol. 111, 061301, 2012.
doi:10.1063/1.3688435

12. Li, Y., Y. Huang, S. Qi, L. Niu, Y. Zhang, and Y. Wu, "Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite," Applied Surface Science, Vol. 258, 3659-3666, 2012.
doi:10.1016/j.apsusc.2011.12.001

13. Goldman, A., Modern Ferrite Technology, Springer Science & Business Media, 2006.

14. Rana, U., et al., "Aromatic bi-, tri- and tetracarboxylic acid doped polyaniline nanotubes: Effect on morphologies and electrical transport properties," Journal of Materials Chemistry C, Vol. 2, 3382-3389, 2014.
doi:10.1039/c3tc32152e

15. Nalwa, H. S., Handbook of Organic Conductive Molecules and Polymers, Volume 4, Conductive Polymers: Transport, Photophysics and Applications, Wiley, 1997.

16. Saini, P., V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, "Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4-18.0 GHz range," Synthetic Metals, Vol. 161, 1522-1526, 2011.
doi:10.1016/j.synthmet.2011.04.033

17. Phan, C. H., M. Mariatti, and Y. H. Koh, "Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers," Journal of Magnetism and Magnetic Materials, Vol. 401, 472-478, 2016.
doi:10.1016/j.jmmm.2015.10.067

18. Wang, Z., G. Wei, and G. L. Zhao, "Enhanced electromagnetic wave shielding effectiveness of Fe doped carbon nanotubes/epoxy composites," Applied Physics Letters, Vol. 103, 183109, 2013.
doi:10.1063/1.4828356