Vol. 71
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-02-12
Wideband Metamaterial Solar Cell Antenna for 5 GHz Wi-Fi Communication
By
Progress In Electromagnetics Research C, Vol. 71, 123-131, 2017
Abstract
In this paper, a novel design for a wideband integrated photovoltaic (PV) solar cell patch antenna for 5 GHz Wi-Fi communication is presented and discussed. The design consists of a slot loaded patch antenna with an array of complimentary split ring resonators (cSRR) etched in the ground plane. This is then integrated with a solar cell element placed above the patch, where the ground plane of the solar cell acts as a stacked antenna element from an RF perspective. The design is simulated on CST Microwave Studio and fabricated. The results indicate that an impedance bandwidth of 1 GHz is achieved to cover the 5 GHz Wi-Fi band with a gain of between 7.73 dBi and 8.18 dBi across this band. It is also demonstrated that size reduction of up to 25% can be achieved. Moreover, it is noted that using a metamaterial loaded ground plane acts as an impedance transformer, therefore the antenna can be fed directly with a 50 Ω microstrip feed line, hence further reducing the overall size.
Citation
Michael Elsdon, Okan Yurduseven, and Xuewu Dai, "Wideband Metamaterial Solar Cell Antenna for 5 GHz Wi-Fi Communication," Progress In Electromagnetics Research C, Vol. 71, 123-131, 2017.
doi:10.2528/PIERC16110302
References

1. Ang, B.-K. and B.-K. Chung, "A wideband e-shaped microstrip patch antenna for 5–6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909        Google Scholar

2. O’Conchubhair, O., P. McEvoy, and M. J. Ammann, "Integration of antenna array with multicrystalline silicon solar cell," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1231-1234, 2015.
doi:10.1109/LAWP.2015.2399652        Google Scholar

3. Caso, R., A. D’Alessandro, A. Michel, and P. Nepa, "Integration of slot antennas in commercial photovoltaic panels for stand-alone communication systems," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 62-69, Jan. 2013.
doi:10.1109/TAP.2012.2220111        Google Scholar

4. Ang, B. K. and B.-K. Chung, "A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909        Google Scholar

5. Moharram, M. A. and A. A. Kishk, "Optically transparent reflectarray antenna design integrated with solar cells," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1700-1712, May 2016.
doi:10.1109/TAP.2016.2539379        Google Scholar

6. Veselago, V. G., "he electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699        Google Scholar

7. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184        Google Scholar

8. Raghavan, S. and V. Anoop Jayaram, "Metamaterial loaded wideband patch antenna," PIERS Proceedings, 760-763, Taipei, Taiwan, Mar. 25–28, 2013.        Google Scholar

9. Ju, J., D. Kim, W. J. Lee, and J. I. Choi, "Wideband high gain antenna using metamaterial superstrate with the zero refractive index," Microwave and Optical Technology Letters, Vol. 51, No. 8, 1973-1976, 2009.
doi:10.1002/mop.24469        Google Scholar

10. Li, L.-W., Y.-N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, "A broadband and high-gain metamaterial microstrip antenna," Applied Physics Letters, Vol. 96, 164101, 2010.
doi:10.1063/1.3396984        Google Scholar

11. Turpin, T. W. and R. Baktur, "Meshed patch antennas integrated on solar cells," IEEE Antennas Wireless Propag. Lett., Vol. 8, 693-696, 2009.
doi:10.1109/LAWP.2009.2025522        Google Scholar

12. Yurduseven, O., D. Smith, and M. Elsdon, "UWB meshed solar monopole antenna," Electron. Lett., Vol. 49, No. 9, 582-584, Apr. 2013.
doi:10.1049/el.2013.0478        Google Scholar

13. Ito, K. and M. Wu, "See-through microstrip antennas constructed on a transparent substrate," Seventh International Conference on Antennas and Propagation, Vol. 1, 133-136, 1991.        Google Scholar

14. Yasin, T., R. Baktur, and C. Furse, "A study on the efficiency of transparent patch antennas designed from conductive oxide films," IEEE International Symposium on Antennas and Propagation (APSURSI), 3085-3087, 2011.
doi:10.1109/APS.2011.5997183        Google Scholar

15. Yurduseven, O. and D. Smith, "A solar cell stacked multi-slot quad-band PIFA for GSM, WLAN and WiMAX networks," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 6, 285-287, Jun. 2013.
doi:10.1109/LMWC.2013.2258006        Google Scholar

16. Danesh, M. and J. R. Long, "An autonomous wireless sensor node incorporating a solar cell antenna for energy harvesting," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3546-3555, Nov. 2011.
doi:10.1109/TMTT.2011.2171043        Google Scholar

17. Vaccaro, S., J. R. Mosig, and P. de Maagt, "Making planar antennas out of solar cells," Electron. Lett., Vol. 38, No. 17, 945-947, Aug. 2002.
doi:10.1049/el:20020675        Google Scholar

18. Yurduseven, O., D. Smith, N. Pearsall, and I. Forbes, "A solar cell stacked slot-loaded suspended microstrip patch antenna with multiband resonance characteristics for WLAN and WiMAX systems," Progress In Electromagnetics Research, Vol. 142, 321-332, 2013.
doi:10.2528/PIER13081502        Google Scholar