1. Choo, H. and H. Ling, "Design of broadband and dual-band microstrip antennas on a high-dielectric substrate using a genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 150, No. 3, 137-142, Jun. 2003. Google Scholar
2. Choo, H., A. Hutani, and L. C. Trintinalia, "Shape optimisation of broadband microstrip antennas using genetic algorithm," IET Electronics Letters, Vol. 36, No. 25, 2057-2058, Dec. 2000.
doi:10.1049/el:20001452 Google Scholar
3. Alatan, L., M. I. Aksun, and K. Leblebicioglu, "Use of computationally efficient method of moments in the optimization of printed antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 4, 725-732, Apr. 1999.
doi:10.1109/8.768813 Google Scholar
4. Pringle, L. N., P. H. Harms, and S. P. Blalock, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1434-1445, Jun. 2004.
doi:10.1109/TAP.2004.825648 Google Scholar
5. Soontornpipit, P., C. M. Furse, and C. C. You, "Miniaturized biocompatible microstrip antenna using genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 6, 1939-1945, Jun. 2005.
doi:10.1109/TAP.2005.848461 Google Scholar
6. John, M. and M. J. Ammann, "Wideband printed monopole design using a genetic algorithm," IEEE Antennas & Wireless Propagation Letters, Vol. 6, No. 11, 447-449, Sep. 2007.
doi:10.1109/LAWP.2007.891962 Google Scholar
7. Ding, D. W. and G. Wang, "MOEA/D-GO for fragmented antenna design," Progress In Electromagnetics Research, Vol. 33, 1-5, Oct. 2013. Google Scholar
8. John, M. and M. J. Ammann, "Design of a wide-band printed antenna using a genetic algorithm on an array of overlapping sub-patches," IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, 92-95, 2006.
doi:10.1109/IWAT.2006.1608983 Google Scholar
9. Herscovici, N., J. Ginn, and T. Donisi, "A fragmented aperture-coupled microstrip antenna," IEEE Antennas and Propagation Society International Symposium, 1-4, San Diego, Jul. 2008. Google Scholar
10. Jin, Z., H. Yang, and X. Tang, "Parameters and schemes selection in the optimization of the fragment-type tag antenna," Third International Joint Conference on Computational Science and Optimization IEEE Computer Society, Vol. 2, 259-262, May 2010. Google Scholar
11. Goojo, K. and Y. C. Chung, "Optimization of UHF RFID tag antennas using a genetic algorithm," IEEE Antennas and Propagation Society International Symposium, 2087-2090, Jul. 9-14, 2006. Google Scholar
12. Jin, Z., H. Yang, X. Tang, and J. Mao, "Impedance analysis of the fragment-type tag antenna using FDTD," International Symposium on Antennas, IEEE Transactions on Antennas and Propagation, 260-262, Nov. 2008. Google Scholar
13. Cummer, S. A., "A simple, nearly perfectly matched layer for general electromagnetic media," IEEE Microwave & Wireless Components Letters, Vol. 13, No. 3, 128-130, Apr. 2003.
doi:10.1109/LMWC.2003.810124 Google Scholar
14. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 10, 1606-1614, Oct. 1999.
doi:10.1109/8.805906 Google Scholar
15. Sheen, D. M., S. M. Ali, and M. D. Abouzahra, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Transactions on Microwave Theory & Techniques, Vol. 8, No. 7, 849-857, Jun. 1990.
doi:10.1109/22.55775 Google Scholar
16. Merulla, E. J. and R. Bansal, "Optimized design and fabrication of a fragmented wire antenna," IEEE Sarnoff Symposium, 1-4, Sarnoff, Apr. 28-30, 2008. Google Scholar