Vol. 53
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-01-30
ISAR Imaging and Scaling Method of Precession Targets in Wideband T/R-R Bistatic Radar
By
Progress In Electromagnetics Research M, Vol. 53, 191-199, 2017
Abstract
Imaging and scaling of precession targets are very important in spatial target surveillance. The bistatic wideband radar echo model of the spatial precession cone-shaped target is induced, and bistatic ISAR imaging method based on time-frequency analysis is described. Combined with the monostatic and bistatic scattering characteristics of cone-shaped targets, the cross scaling method is presented through range instantaneous Doppler (RID) image matching using T/R-R bistatic radar observations, and the correct scaled monostatic and bistatic two-dimensional images can be obtained at the same time, which can reflect the actual size of the target. The algorithm is validated by dynamic simulation with electromagnetic computation data and provides a feasible way for the stable recognition of spatial targets.
Citation
Xiaofeng Ai, Yonghu Zeng, Liandong Wang, Manxi Wang, and Yongzhen Li, "ISAR Imaging and Scaling Method of Precession Targets in Wideband T/R-R Bistatic Radar," Progress In Electromagnetics Research M, Vol. 53, 191-199, 2017.
doi:10.2528/PIERM16111302
References

1. Wang, T., X. Wang, et al. "Estimation of precession parameters and generation of ISAR images of ballistic missile targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 4, 1983-1995, 2010.
doi:10.1109/TAES.2010.5595608

2. Zhuang, Z., X. Wang, X. Li, et al. Radar Target Recognition, 311-388, Higher Education Press, 2015.

3. Vespe, M., C. Baker, et al. "Radar target classification using multiple perspectives," IET Radar Sonar Navigation, Vol. 1, No. 4, 300-307, 2007.
doi:10.1049/iet-rsn:20060049

4. Zhu, F., X.-D. Zhang, et al. "Nonstationary hidden markov models for multiaspect discriminative feature extraction from radar targets," IEEE Transactions on Signal Processing, Vol. 55, No. 5, 2203-2214, 2007.
doi:10.1109/TSP.2007.892708

5. Ye, C.-M., J. Xu, et al. "Key parameter estimation for radar rotating object imaging with multi-aspect observations," Science in China: Information Sciences, Vol. 53, No. 8, 1641-1652, 2010.
doi:10.1007/s11432-010-4028-3

6. Bai, X., F. Zhou, M. Xing, and Z. Bao, "Scaling the 3-D image of spinning space debris via bistatic inverse synthetic aperture radar," IEEE Transactions on Geoscience Remote Sensing Letters, Vol. 7, No. 3, 430-434, 2010.
doi:10.1109/LGRS.2009.2038286

7. Zhang, Y.-B., Z.-B. Zhu, Z.-Y. Tang, et al. "Bistatic inverse synthetic aperture radar image formation," Journal of Electronics & Information Technology, Vol. 28, No. 6, 969-972, 2006.

8. Chen, V. C., A. des Rosiers, and R. Lipps, "Bi-static ISAR range-doppler imaging and resolution analysis," 2009 IEEE Radar Conference, 1-5, Pasadena, California, United States, 2009.

9. Martorella, M., J. Palmer, J. Homer, et al. "On bistatic inverse synthetic aperture radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 3, 1125-1134, 2007.
doi:10.1109/TAES.2007.4383602

10. Martorella, M., "Analysis of the robustness of bistatic inverse synthetic aperture radar in the presence of phase synchronization errors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 4, 2673-2689, 2011.
doi:10.1109/TAES.2011.6034658

11. Pastina, D., M. Bucciarelli, and P. Lombardo, "Multistatic and MIMO distributed ISAR for enhanced cross-range resolution of rotating targets," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 8, 3300-3318, 2010.
doi:10.1109/TGRS.2010.2043740

12. Chen, V. C. and H. Ling, Time-Frequency Transforms for Radar Imaging and Signal Analysis, 1st Ed., 1-6, Artech House, 2002.

13. Jin, G.-H., X.-Z. Gao, X. Li, et al. "ISAR image cross scaling method for ballistic target based on image registration," Systems Engineering and Electronics, Vol. 32, No. 12, 2565-2569, 2012.

14. Ai, X. F., X. H. Zou, Y. Z. Li, et al. "Bistatic scattering centres of cone-shaped targets and target length estimation," Science China: Information Sciences, Vol. 55, No. 12, 2888-2898, 2012.
doi:10.1007/s11432-012-4749-6

15. Ai, X. F., X. H. Zou, J. Liu, et al. "Bistatic high range resolution profiles of precessing cone-shaped targets," IET Radar Sonar Navigation, Vol. 7, No. 6, 615-622, 2013.
doi:10.1049/iet-rsn.2012.0168