1. Litchinitser, N. M., "Structured light meets structured matter," Science, Vol. 337, 1054-1055, 2012.
doi:10.1126/science.1226204 Google Scholar
2. Chen, R. P., Z. Chen, K. H. Chew, P. G. Li, Z. Yu, J. Ding, and S. He, "Structured caustic vector vortex optical field: Manipulating optical angular momentum flux and polarization rotation," Scientific Reports, Vol. 5, 10628, 2015.
doi:10.1038/srep10628 Google Scholar
3. Waller, E. H. and G. Freymann, "Independent spatial intensity, phase and polarization distribution," Optics Express, Vol. 21, 28167-28174, 2013.
doi:10.1364/OE.21.028167 Google Scholar
4. Chen, R. P., K. H. Chew, B. Gu, and G. Zhou, "Effect of a spiral phase on a vector beam with hybrid polarization states," Journal of Optics, Vol. 17, 065605, 2015.
doi:10.1088/2040-8978/17/6/065605 Google Scholar
5. Bomzon, Z., V. Kleiner, and E. Hasman, "Computer-generated space-variant polarization elements with subwavelength metal stripes," Optics Letters, Vol. 26, 33-35, 2001.
doi:10.1364/OL.26.000033 Google Scholar
6. Chen, R., K. Agarwal, J. R. Colin, Sheppard, and X. D. Chen, "Imaging using cylindrical vector beams in a high numerical-aperture microscopy system," Optics Letters, Vol. 38, 3111-3114, 2013.
doi:10.1364/OL.38.003111 Google Scholar
7. Visser, J., E. R. Elier, and G. Nierhuis, "Polarization entanglement in a crystal with three fold symmetry," Physical Review A, Vol. 66, 033814, 2002.
doi:10.1103/PhysRevA.66.033814 Google Scholar
8. Dorn, R., S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized beam," Physical Review Letters, Vol. 91, 233901, 2003.
doi:10.1103/PhysRevLett.91.233901 Google Scholar
9. Tian, B. and J. Pu, "Tight focusing of a double-ring-shaped azimuthally polarized beam," Optics Letters, Vol. 36, 2014-2016, 2011.
doi:10.1364/OL.36.002014 Google Scholar
10. Gu, B., Y. Pan, L. J. Wu, and Y. P. Cui, "Tight focusing properties of spatial-variant linearly-polarized vector beams," Journal of Optics, Vol. 43, 18-27, 2013.
doi:10.1007/s12596-013-0154-9 Google Scholar
11. Hu, K. L., Z. Y. Chen, and J. X. Pu, "Tight focusing properties of hybridly polarized vector beams," Journal of Optical Society of America A, Vol. 29, 1099-1101, 2012.
doi:10.1364/JOSAA.29.001099 Google Scholar
12. Deng, D., Q. Guo, L. Wu, and X. Yang, "Propagation of radially polarized elegant light beams," Journal of Optical Society of America B, Vol. 24, 636-643, 2007.
doi:10.1364/JOSAB.24.000636 Google Scholar
13. Wang, X. L., J. P. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, "Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement," Optics Letters, Vol. 32, 3549-3551, 2007.
doi:10.1364/OL.32.003549 Google Scholar
14. Wang, X. L., Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, and H. T. Wang, "A new type of vector fields with hybrid states of polarization," Optics Express, Vol. 18, 10786-10795, 2010.
doi:10.1364/OE.18.010786 Google Scholar
15. Chen, H., J. J. Hao, B. F. Zhang, J. Xu, J. P. Ding, and H. T. Wang, "Generation of vector beam with space-variant distribution of both polarization and phase," Optics Letters, Vol. 36, 3179-3181, 2011.
doi:10.1364/OL.36.003179 Google Scholar
16. Han, W., Y. F. Yang, W. Cheng, and Q. W. Zhan, "Vectorial optical field generator for the creation of arbitrarily complex fields," Optics Express, Vol. 21, 20692-20793, 2013.
doi:10.1364/OE.21.020692 Google Scholar
17. Lerman, G. M., L. Stern, and U. Levy, "Generation and tight focusing of hybridly polarized vector beams," Optics Express, Vol. 18, 27650-27657, 2010.
doi:10.1364/OE.18.027650 Google Scholar
18. Li, S. M., Y. Li, X. L. Wang, L. J. Kong, K. Lou, C. Tu, Y. Tian, and H. T. Wang, "Taming the collapse of optical fields," Scientific Reports, Vol. 2, 1007, 2012.
doi:10.1038/srep01007 Google Scholar
19. Chen, R. P., L. X. Zhong, K. H. Chew, T. Y. Zhao, and X. Zhang, "Collapse dynamics of a vector vortex optical field with inhomogeneous states of polarization," Laser Physics, Vol. 25, 075401, 2015.
doi:10.1088/1054-660X/25/7/075401 Google Scholar
20. Chen, R. P. and G. Li, "The evanescent wavefield part of a cylindrical vector beam," Optics Express, Vol. 21, 22246-22254, 2013.
doi:10.1364/OE.21.022246 Google Scholar
21. Setala, T., J. Tervo, and A. T. Frberg, "Stokes parameters and polarization contrasts in Young's interference experiment," Optics Letters, Vol. 31, 208-210, 2006.
doi:10.1364/OL.31.000208 Google Scholar
22. Li, Y. N., X. L. Wang, H. Zhao, L. J. Kong, K. Lou, B. Gu, C. G. Tu, and H. T. Wang, "Young's two-slit interference of vector light fields," Optics Letters, Vol. 37, 1790-1792, 2012.
doi:10.1364/OL.37.001790 Google Scholar
23. Wootters, W. W. and W. H. Zurek, "Complementarity in the double-slit experiment: Quantum nonseparability and quantitative statement of Bohr's principle," Phys. Rev. D, Vol. 19, 473-484, 1979.
doi:10.1103/PhysRevD.19.473 Google Scholar
24. Svensson, B. E. Y., "Pedagogical review of quantum measurement theory with an emphasis on weak measurements," Quanta, Vol. 2, 18-49, Quanta.
doi:10.12743/quanta.v2i1.12 Google Scholar
25. Cai, F., J. Yu, and S. He, "Vectorial electric field Monte Caro simulations for focused laser beams (800 nm–2220 nm) in a biological sample," Progress In Electromagnetics Research, Vol. 142, 667-681, 2013.
doi:10.2528/PIER13080705 Google Scholar
26. Imran, A. and Q. A. Naqvi, "Diffraction of plane wave by two parallel slits in an infinitely long impedance plane using the method of Kobayashi potential," Progress In Electromagnetics Research, Vol. 63, 107-123, 2006.
doi:10.2528/PIER06042601 Google Scholar
27. Born, M. and E. Wolf, Principles of Optics, 7th Ed., Cambridge U. Press, 1999.
doi:10.1017/CBO9781139644181