Vol. 54
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-09
The Two-Slit Interference of Vector Optical Fields with Both Radially and Azimuthally Variant States of Polarization
By
Progress In Electromagnetics Research M, Vol. 54, 75-82, 2017
Abstract
The interference behaviors of a vector optical field with both radially and azimuthally variant states of polarization (SoP) through the Young's two-slits are theoretically studied. The optical field distribution with periodic stripes in the far field results from the interference of the vector optical field through the Young's two-slits with different initial SoP distributions. It is found that the far-field distribution can be manipulated by the incident vector optical field with the initial phase and SoP distributions. Particularly, the distribution of radially-variant SoP in the cross-section of the incident optical field provides an additional freedom to control the interference patterns of the x-component, y-component and total intensity distribution in far field. This approach provides a new method to further expand the functionality of an optical system by considering the distribution of SoP in field cross-section.
Citation
Tengyue Gao, Chaoyang Qian, Xiaoyu Zhang, and Rui Pin Chen, "The Two-Slit Interference of Vector Optical Fields with Both Radially and Azimuthally Variant States of Polarization," Progress In Electromagnetics Research M, Vol. 54, 75-82, 2017.
doi:10.2528/PIERM16111702
References

1. Litchinitser, N. M., "Structured light meets structured matter," Science, Vol. 337, 1054-1055, 2012.
doi:10.1126/science.1226204

2. Chen, R. P., Z. Chen, K. H. Chew, P. G. Li, Z. Yu, J. Ding, and S. He, "Structured caustic vector vortex optical field: Manipulating optical angular momentum flux and polarization rotation," Scientific Reports, Vol. 5, 10628, 2015.
doi:10.1038/srep10628

3. Waller, E. H. and G. Freymann, "Independent spatial intensity, phase and polarization distribution," Optics Express, Vol. 21, 28167-28174, 2013.
doi:10.1364/OE.21.028167

4. Chen, R. P., K. H. Chew, B. Gu, and G. Zhou, "Effect of a spiral phase on a vector beam with hybrid polarization states," Journal of Optics, Vol. 17, 065605, 2015.
doi:10.1088/2040-8978/17/6/065605

5. Bomzon, Z., V. Kleiner, and E. Hasman, "Computer-generated space-variant polarization elements with subwavelength metal stripes," Optics Letters, Vol. 26, 33-35, 2001.
doi:10.1364/OL.26.000033

6. Chen, R., K. Agarwal, J. R. Colin, Sheppard, and X. D. Chen, "Imaging using cylindrical vector beams in a high numerical-aperture microscopy system," Optics Letters, Vol. 38, 3111-3114, 2013.
doi:10.1364/OL.38.003111

7. Visser, J., E. R. Elier, and G. Nierhuis, "Polarization entanglement in a crystal with three fold symmetry," Physical Review A, Vol. 66, 033814, 2002.
doi:10.1103/PhysRevA.66.033814

8. Dorn, R., S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized beam," Physical Review Letters, Vol. 91, 233901, 2003.
doi:10.1103/PhysRevLett.91.233901

9. Tian, B. and J. Pu, "Tight focusing of a double-ring-shaped azimuthally polarized beam," Optics Letters, Vol. 36, 2014-2016, 2011.
doi:10.1364/OL.36.002014

10. Gu, B., Y. Pan, L. J. Wu, and Y. P. Cui, "Tight focusing properties of spatial-variant linearly-polarized vector beams," Journal of Optics, Vol. 43, 18-27, 2013.
doi:10.1007/s12596-013-0154-9

11. Hu, K. L., Z. Y. Chen, and J. X. Pu, "Tight focusing properties of hybridly polarized vector beams," Journal of Optical Society of America A, Vol. 29, 1099-1101, 2012.
doi:10.1364/JOSAA.29.001099

12. Deng, D., Q. Guo, L. Wu, and X. Yang, "Propagation of radially polarized elegant light beams," Journal of Optical Society of America B, Vol. 24, 636-643, 2007.
doi:10.1364/JOSAB.24.000636

13. Wang, X. L., J. P. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, "Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement," Optics Letters, Vol. 32, 3549-3551, 2007.
doi:10.1364/OL.32.003549

14. Wang, X. L., Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, and H. T. Wang, "A new type of vector fields with hybrid states of polarization," Optics Express, Vol. 18, 10786-10795, 2010.
doi:10.1364/OE.18.010786

15. Chen, H., J. J. Hao, B. F. Zhang, J. Xu, J. P. Ding, and H. T. Wang, "Generation of vector beam with space-variant distribution of both polarization and phase," Optics Letters, Vol. 36, 3179-3181, 2011.
doi:10.1364/OL.36.003179

16. Han, W., Y. F. Yang, W. Cheng, and Q. W. Zhan, "Vectorial optical field generator for the creation of arbitrarily complex fields," Optics Express, Vol. 21, 20692-20793, 2013.
doi:10.1364/OE.21.020692

17. Lerman, G. M., L. Stern, and U. Levy, "Generation and tight focusing of hybridly polarized vector beams," Optics Express, Vol. 18, 27650-27657, 2010.
doi:10.1364/OE.18.027650

18. Li, S. M., Y. Li, X. L. Wang, L. J. Kong, K. Lou, C. Tu, Y. Tian, and H. T. Wang, "Taming the collapse of optical fields," Scientific Reports, Vol. 2, 1007, 2012.
doi:10.1038/srep01007

19. Chen, R. P., L. X. Zhong, K. H. Chew, T. Y. Zhao, and X. Zhang, "Collapse dynamics of a vector vortex optical field with inhomogeneous states of polarization," Laser Physics, Vol. 25, 075401, 2015.
doi:10.1088/1054-660X/25/7/075401

20. Chen, R. P. and G. Li, "The evanescent wavefield part of a cylindrical vector beam," Optics Express, Vol. 21, 22246-22254, 2013.
doi:10.1364/OE.21.022246

21. Setala, T., J. Tervo, and A. T. Frberg, "Stokes parameters and polarization contrasts in Young's interference experiment," Optics Letters, Vol. 31, 208-210, 2006.
doi:10.1364/OL.31.000208

22. Li, Y. N., X. L. Wang, H. Zhao, L. J. Kong, K. Lou, B. Gu, C. G. Tu, and H. T. Wang, "Young's two-slit interference of vector light fields," Optics Letters, Vol. 37, 1790-1792, 2012.
doi:10.1364/OL.37.001790

23. Wootters, W. W. and W. H. Zurek, "Complementarity in the double-slit experiment: Quantum nonseparability and quantitative statement of Bohr's principle," Phys. Rev. D, Vol. 19, 473-484, 1979.
doi:10.1103/PhysRevD.19.473

24. Svensson, B. E. Y., "Pedagogical review of quantum measurement theory with an emphasis on weak measurements," Quanta, Vol. 2, 18-49, Quanta.
doi:10.12743/quanta.v2i1.12

25. Cai, F., J. Yu, and S. He, "Vectorial electric field Monte Caro simulations for focused laser beams (800 nm–2220 nm) in a biological sample," Progress In Electromagnetics Research, Vol. 142, 667-681, 2013.
doi:10.2528/PIER13080705

26. Imran, A. and Q. A. Naqvi, "Diffraction of plane wave by two parallel slits in an infinitely long impedance plane using the method of Kobayashi potential," Progress In Electromagnetics Research, Vol. 63, 107-123, 2006.
doi:10.2528/PIER06042601

27. Born, M. and E. Wolf, Principles of Optics, 7th Ed., Cambridge U. Press, 1999.
doi:10.1017/CBO9781139644181