1. Chen, Z., A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express, Vol. 12, No. 7, 1214-1220, 2004.
doi:10.1364/OPEX.12.001214 Google Scholar
2. Kim, M.-S., T. Scharf, S. M¨uhlig, C. Rockstuhl, and H. P. Herzig, "Engineering photonic nanojets," Opt. Express, Vol. 19, No. 11, 10206, 2011.
doi:10.1364/OE.19.010206 Google Scholar
3. Wang, Z., W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, "Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope," Nat. Commun., Vol. 2, 218, 2011.
doi:10.1038/ncomms1211 Google Scholar
4. Dantham, V. R., P. B. Bisht, and C. K. R. Namboodiri, "Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere," Journal of Applied Physics, Vol. 109, No. 10, 2011.
doi:10.1063/1.3590156 Google Scholar
5. Kong, S.-C., A. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express, Vol. 16, No. 18, 13713, 2008.
doi:10.1364/OE.16.013713 Google Scholar
6. Heifetz, A., S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojets," Journal of Computational and Theoretical Nanoscience, Vol. 6, No. 9, 1979-1992, 2009.
doi:10.1166/jctn.2009.1254 Google Scholar
7. Chen, Z., A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express, Vol. 12, No. 7, 1214-1220, 2004.
doi:10.1364/OPEX.12.001214 Google Scholar
8. Li, X., Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express, Vol. 13, No. 2, 526-533, 2005.
doi:10.1364/OPEX.13.000526 Google Scholar
9. Lecler, S., Y. Takakura, and P. Meyrueis, "Properties of a three-dimensional photonic jet," Opt. Lett., Vol. 30, No. 19, 2641-2643, 2005.
doi:10.1364/OL.30.002641 Google Scholar
10. Itagi, A. V. and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A. Opt. Image Sci. Vis., Vol. 22, No. 12, 2847-58, 2005.
doi:10.1364/JOSAA.22.002847 Google Scholar
11. Ammar, N., T. Aguili, H. Baudrand, B. Sauviac, and B. Ounnas, "Wave concept iterative process method for electromagnetic or photonic jets: Numerical and experimental results," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 1, 2015.
doi:10.1109/TAP.2015.2486800 Google Scholar
12. Ju, D., H. Pei, Y. Jiang, and X. Sun, "Controllable and enhanced nanojet effects excited by surface plasmon polariton," Appl. Phys. Lett., Vol. 102, 171109, 2013.
doi:10.1063/1.4802958 Google Scholar
13. Khaleque, A. and Z. Li, "Tailoring the properties of photonic nanojets by changing the material and geometry of the concentrator," Progress In Electromagnetics Research Letters, Vol. 48, 7-13, 2014.
doi:10.2528/PIERL14052108 Google Scholar
14. Chen, Z., X. Li, A. Taflove, and V. Backman, "Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks," Appl. Opt., Vol. 45, No. 4, 633-638, 2006.
doi:10.1364/AO.45.000633 Google Scholar
15. Godi, G., R. Sauleau, and D. Thouroude, "Performance of reduced size substrate lens antennas for millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1278-1286, 2005.
doi:10.1109/TAP.2005.844420 Google Scholar
16. Boriskin, A. V., A. Rolland, R. Sauleau, and A. I. Nosich, "Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 758-764, 2008.
doi:10.1109/TAP.2008.916950 Google Scholar
17. Azizi, M. K., N. Sboui, F. Choubani, and A. Gharsallah, "A novel design of photonic band gap by F.W.C.I.P method," 2008 2nd International Conference on Signals, Circuits and Systems, SCS 2008, 2008. Google Scholar
18. Latrach, L., M. Karim Azizi, A. Gharsallah, and H. Baudrand, "Study of one dimensional almost periodic structure using a novel WCIP method," International Journal on Communications Antenna and Propagation (I.Re.C.A.P.), Vol. 4, No. 6, December 2014, ISSN 2039–5086. Google Scholar
19. Baudrand, H. and R. S. N'gongo, "Applications of wave concept iterative procedure," Recent Res. Devel. Microwave Theory Tech., Vol. 1, 187-197, 1999. Google Scholar
20. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
21. Baudrand, H., M. K. Azizi, and M. Titaouine, General Principles of the Wave Concept Iterative Process, 1-42, John Wiley & Sons, Inc, September 2016.
22. Baudrand, H., N. Raveu, and M. Titaouine, The Wave Concept in Electromagnetism and Circuits: Theory and Applications, ISTE Ltd 2016, ISTE Ltd and John Wiley & Sons, Inc, September 2016.
doi:10.1002/9781119332701
23. Azizi, M. K., L. Latrach, N. Raveu, A. Gharsallah, and H. Baudrand, "A new approach of almost periodic lumped elements circuits by an iterative method using auxiliary sources," Am. J. Appl. Sci., Vol. 10, No. 11, 1457-1472, 2013.
doi:10.3844/ajassp.2013.1457.1472 Google Scholar