Vol. 54
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-08
Improving the Torque Characteristics of Interior PM Synchronous Motor Using an Asymmetric on-off Method on the Rotor Surface
By
Progress In Electromagnetics Research M, Vol. 54, 55-65, 2017
Abstract
In this paper, a novel technique for improving the torque characteristics of the Interior Permanent Magnet Synchronous Motor is proposed using rotor shape optimization. The main objective is to decrease the torque ripple while increasing average torque. The improvement process is performed for the maximum torque-angle operating point, and then studies are carried out for other currents and angles. Defining a multi-element grid on rotor surface regions in which each element could be either iron or air, the best practical rotor surface topology could be obtained to improve the overall torque characteristics of IPMSM. The best motor performance is achieved using practical rotor shapes obtained from a cluster of points in average torque versus torque ripple plane. Finally, for torque ripple cancellation, two or three alternate rotor configurations with optimized average torque and out of phase torque pulsation have been selected. This selection will guarantee improved average torque while mitigating torque pulsation by a significant margin. Using this method, a rotor topology obtained in which torque ripple is reduced by 80% with slightly improved average torque.
Citation
Mohammad Adib Ghadamyari, Mehdi Moallem, and Babak Fahimi, "Improving the Torque Characteristics of Interior PM Synchronous Motor Using an Asymmetric on-off Method on the Rotor Surface," Progress In Electromagnetics Research M, Vol. 54, 55-65, 2017.
doi:10.2528/PIERM16122403
References

1. Ren, W., Q. Xu, and Q. Li, "Asymmetrical V-shape rotor configuration of an interior permanent magnet machine for improving torque characteristics," IEEE Transactions on Magnetics, Vol. 51, No. 11, Nov. 2015.

2. Yoon, M. H., D. Y. Kim, S. I. Kim, and J. P. Hong, "An asymmetric rotor design of interior permanent magnet synchronous motor for improving torque performance," Journal of Magnetics, Vol. 20, No. 4, 387-393, 2015.
doi:10.4283/JMAG.2015.20.4.387

3. Li, G. J., B. Ren, Z. Q. Zhu, Y. X. Li, and J. Ma, "Cogging torque mitigation of modular permanent magnet machines," IEEE Transactions on Magnetics, Vol. X, 2015.

4. Jiang, J. W., B. Bilgin, Y. Yang, A. Sathyan, H. Dadkhah, and A. Emadi, "Rotor skew pattern design and optimization for cogging torque reduction," IET Electrical Systems in Transportation, 2015.

5. Hwang, K. Y., J. H. Jo, and B. I. Kwon, "A study on optimal pole design of spoke-type IPMSM with concentrated winding for reducing the torque ripple by experiment design method," IEEE Transactions on Magnetics, Vol. 45, No. 10, 4712-4715, Oct. 2009.
doi:10.1109/TMAG.2009.2022645

6. Han, S. H., T. M. Jahns, W. L. Soong, M. K. Güven, and M. S. Illindala, "Torque ripple reduction in interior permanent magnet synchronous machines using stators with odd number of slots per pole pair," IEEE Transactions on Energy Conversion, Vol. 25, No. 1, 118-127, Mar. 2010.
doi:10.1109/TEC.2009.2033196

7. Yamazaki, K., M. Kumagai, T. Ikemi, and S. Ohki, "A novel rotor design of interior permanent magnet synchronous motors to cope with both maximum torque and iron loss reduction,", IEEE, 2013.

8. Kim, D. Y., J. K. Nam, and G. H. Jang, "Reduction of magnetically-induced vibration of a spoke-type IPM motor using magneto-mechanical coupled analysis and optimization," IEEE Transactions on Magnetics, Vol. 49, No. 9, Sep. 2013.
doi:10.1109/TMAG.2013.2255307

9. Lim, S., S. Min, and J. Hong, "Level-set-based optimal stator design of interior permanent-magnet motor for torque ripple reduction using phase-field model," IEEE Transactions on Magnetics, Vol. 47, No. 10, 3020-3023, Oct. 2011.
doi:10.1109/TMAG.2011.2158201

10. Abbasian, M. A., M. Moallem, and B. Fahimi, "Double-Stator Switched Reluctance Machines (DSSRM): Fundamentals and magnetic force analysis," IEEE Transactions on Energy Conversion, Vol. 25, No. 3, 589-597, 2010.
doi:10.1109/TEC.2010.2051547

11. Yamazaki, K., Y. Kanou, Y. Fukushima, S. Ohki, and A. Nezu, "Reduction of magnet eddy-current loss in interior permanent-magnet motors with concentrated windings," IEEE Transactions on Industry Applications, Vol. 46, No. 6, 2434-2441, Nov.-Dec. 2010.
doi:10.1109/TIA.2010.2073672

12. Alotto, P., M. Barcaro, N. Bianchi, and M. Guarnieri, "Optimization of interior PM motors with machaon rotor flux barriers," IEEE Transactions on Magnetics, Vol. 47, No. 5, 958-961, May 2011.
doi:10.1109/TMAG.2010.2073450

13. Ishikawa, T., M. Yamada, and N. Kurita, "Design of magnet arrangement in interior permanent magnet synchronous motor by response surface methodology in consideration of torque and vibration," IEEE Transactions on Magnetics, Vol. 47, No. 5, May 2011.
doi:10.1109/TMAG.2010.2073450

14. Kim, H. S., Y. M. You, and B. Kwon, "Rotor shape optimization of interior permanent magnet BLDC motor according to magnetization direction," IEEE Transactions on Magnetics, Vol. 49, No. 5, 2193-2196, May 2013.
doi:10.1109/TMAG.2013.2242056

15. Fei, E. W. and P. C. K. Luk, "Torque ripple reduction of a direct-drive permanent-magnet synchronous machine by material-efficient axial pole pairing," IEEE Transactions Industrial Electronics, Vol. 59, No. 6, 2601-2611, 2011.
doi:10.1109/TIE.2011.2158048

16. Suja, F. R. and P. Melba Mary, "Minimization of torque ripples in permanent magnet synchronous motor-overview," International Journal of Scientific & Engineering Research, Vol. 4, No. 10, Oct. 2013.

17. Richnow, D. J., D. Gerling, and P. Stenzel, "Torque ripple reduction in permanent magnet synchronous machines with concentrated windings and pre-wound coils," 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, Oct. 22-25, 2014.

18. Zhu, W., S. Pekarek, B. Fahimi, and B. J. Deken, "Investigation of force generation in a permanent magnet synchronous machine," IEEE Transactions on Energy Conversion, Vol. 22, No. 3, 557-565, Sep. 2007.
doi:10.1109/TEC.2006.888034

19. Jiang, W., S. Pekarek, B. Fahimi, and B. J. Deken, "Investigation of force generation in a permanent magnet synchronous machine," IEEE Transactions on Energy Conversion, Vol. 22, No. 3, Sep. 2007.
doi:10.1109/TEC.2006.888034

20. Jiang, W., M. Moallem, B. Fahimi, and S. Pekarek, "Qualitative investigation of force density components in electromechanical energy conversion process," IECON, 2006.

21. Ghadamyari, M. A., M. Moallem, B. Fahimi, and M. McDonough, "Micro-analysis of electromagnetic force distribution in a simple actuator," 19th International Conference on Computation of Electromagnetic Fields (COMPUMAG), 2013.

22. Kiomarsi, A., M. Moallem, and B. Fahimi, "Mitigation of torque ripple in interior permanent magnet motors via optimal shape design," IEEE Transactions on Magnetics, Vol. 42, No. 11, Nov. 2006.

23. Gu, L., M. Moallem, E. Bostanci, S. Wang, and P. Devendra, "Extended field reconstruction method for modeling of interior permanent magnet synchronous machines," IEEE Transportations Electrification Conference and Expo (ITEC), 2016.