1. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
2. Kock, W. E., "Metal-lens antennas," Proceedings of the IRE, Vol. 34, 828-836, 1946.
doi:10.1109/JRPROC.1946.232264 Google Scholar
3. Awai, I., H. Kubo, T. Iribe, D. Wakamiya, and A. Sanada, "An artificial dielectric material of huge permittivity with novel anisotropy and its application to a microwave BPF," IEEE MTT-S Digest, Vol. 1, 301-304, Philadelphia, 2003. Google Scholar
4. Huang, D., T. La Rocca, and M.-C. F. Chang, "Low phase noise millimetre-wave frequency generation using embedded artificial dielectric," Electronics Letters, Vol. 43, No. 18, 983-984, 2007.
doi:10.1049/el:20071485 Google Scholar
5. Ma, Y., B. Rejaei, and Y. Zhuang, "Artificial dielectric shields for integrated transmission lines," IEEE Microwave and Wireless Component Letters, Vol. 18, No. 7, 431-433, 2008.
doi:10.1109/LMWC.2008.924907 Google Scholar
6. Ma, Y., B. Rejaei, and Y. Zhuang, "Low-loss on-chip transmission lines with micro-patterned artificial dielectric shields," Electronics Letters, Vol. 44, No. 15, 913-914, 2008.
doi:10.1049/el:20081324 Google Scholar
7. Takahagi, K. and E. Sano, "High-gain silicon on-chip antenna with artificial dielectric layer," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3624-3629, 2011.
doi:10.1109/TAP.2011.2163758 Google Scholar
8. Syed, W. H. and A. Neto, "Front to back ratio enhancement of planar printed antennas by means of artificial dielectric layers," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 11, 5408-5416, 2013.
doi:10.1109/TAP.2013.2275915 Google Scholar
9. Peuzin, J. C. and J. C. Gay, "Demonstration of the waveguiding properties of an artificial surface reactance," IEEE Transactions on Microwave Theory and Technology, Vol. 42, No. 9, 1695-1699, 1994.
doi:10.1109/22.310564 Google Scholar
10. Cavallo, D., W. H. Syed, and A. Neto, "Closed-form analysis of artificial dielectric layers - Part I: Properties of a single layer under plane-wave incidence," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6256-6264, 2014.
doi:10.1109/TAP.2014.2365233 Google Scholar
11. Barzegar-Parizi, S. and B. Rejaei, "Calculation of effective parameters of high permittivity integrated artificial dielectrics," IET Microwaves, Antennas & Propagation, Vol. 9, No. 12, 1287-1296, 2015.
doi:10.1049/iet-map.2014.0377 Google Scholar
12. Luukkonen, O., C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1624-1632, 2008.
doi:10.1109/TAP.2008.923327 Google Scholar
13. http://www.keysight.com/upload/cmc upload/All/FreeSpaceSeminarRev2.pdf.
14. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135 Google Scholar
15. Pozar, D. M., Microwave Engineering, 2nd Ed., John Wiley and Sons, 1998.
16. Smith, D. R., S. Schultz, P. Marko, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar
17. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., McGraw-Hill, 1992.