1. Reddy, B. M., "Physics of the troposphere," Handbook on Radio Propagation for Tropical and Subtropical Countries, URSI Committee on Developing Countries, UNESCO Subvention, 59-77, New Delhi, 1987. Google Scholar
2. Isabona, J., C. C. Konyeha, C. B. Chinule, and G. P. Isaiah, "Radio field strength propagation data and path loss calculation methods in UMTS network," Advances in Physics Theories and Applications, Vol. 21, 54-68, 2013. Google Scholar
3. Ekpenyong, M., S. Robinson, and J. Isabona, "Macrocellular propagation prediction for wireless communications in urban environments," JCS & T, Vol. 10, No. 3, 130-136, 2010. Google Scholar
4. Faruk, N., A. Ayeni, and Y. A. Adediran, "On the study of empirical pathloss models for accurate prediction of Tv signal for secondary users," Progress In Electromagnetics Research B, Vol. 49, 155-176, 2013.
doi:10.2528/PIERB13011306 Google Scholar
5. Nwalozie, G. C., S. U. Ufoaroh, C. O. Ezeagwu, and A. C. Ejiofor, "Pathloss prediction for GSM mobile networks for urban region of Aba, South-East, Nigeria," International Journal of Computer Science and Mobile Computing, Vol. 3, No. 2, 267-281, 2014. Google Scholar
6. Bakinde, N. T., N. Faruk, A. A. Ayeni, M. Y. Muhammad, and M. I. Gumel, "Comparison of propagation models for GSM 1800 and WCDMA systems in selected urban areas of Nigeria," International Journal of Applied Information Systems (IJAIS), Vol. 2, No. 7, 6-13, 2012. Google Scholar
7. Deligiorgi, D., K. Philippopoulos, and G. Kouroupetroglou, "Artificial neural network based methodologies for the spatial and temporal estimation of air temperature," International Conference on Pattern Recognition Applications and Methods, 669-578, 2013. Google Scholar
8. Usman, A. U., O. U. Okereke, and E. E. Omizegba, "Instantaneous GSM signal strength variation with weather and environmental factors," American Journal of Engineering Research (AJSER), Vol. 4, No. 3, 104-115, 2015. Google Scholar
9. Sharma, P. K. and R. K. Singh, "Comparative analysis of propagation path loss," International Journal of Engineering Science and Technology, Vol. 2, No. 6, 2008-2013, 2010. Google Scholar
10. Ayekomilogbon, O., O. Famoriji, and O. Olasoji, "UHF band radio wave propagation mechanism in forested environments for wireless communication systems," Journal of Information Engineering and Applications, Vol. 3, No. 7, 11-16, 2013. Google Scholar
11. Nwawelu, U. N., A. N. Nzeako, and M. A. Ahaneku, "The limitations of campus wireless networks: A case study of University of Nigeria, Nsukka," International Journal of Networks and Communications, Vol. 2, No. 5, 112-122, 2012.
doi:10.5923/j.ijnc.20120205.04 Google Scholar
12. Ogbulezie, J. C., M. U. Onuu, D. E. Bassey, and S. Etienam-Umoh, "Site specific measurements and propagation models for GSM in three cities in Northern Nigeria," American Journal of Scientific and Industrial Research, Vol. 4, No. 2, 238-245, 2013a.
doi:10.5251/ajsir.2013.4.2.238.245 Google Scholar
13. Ogbulezie, J. C., M. U. Onuu, J. O. Ushie, and B. E. Usibe, "Propagation models for GSM 900 and 1800 MHz for Port Harcourt and Enugu, Nigeria," Network and Communication Technologies, Vol. 2, No. 2, 1-10, 2013b.
doi:10.5539/nct.v2n2p1 Google Scholar
14. Chebil, J., A. K. Lwas, M. R. Islam, and A. Zyoud, "Investigation of path loss models for mobile communications in Malaysia," Australian Journal of Basic and Applied Sciences, Vol. 5, No. 6, 365-371, 2011. Google Scholar
15. Armoogum, V., R. Munee, and S. Armoogum, "Path loss analysis for 3G mobile networks for urban and rural regions of Mauritius," Proceedings of the Sixth International Conference on Wireless and Mobile Communications (ICWMC), 164-169, 2010. Google Scholar
16. Benmus, T. A., R. Abboud, and M. K. Shater, "Neural network approach to model the propagation path loss for great Tripoli area at 900, 1800 and 2100 MHz bands," International Journal of Sciences and Techniques of Automatic Control and Engineering, Vol. 10, No. 2, 2121-2126, 2016. Google Scholar
17. Obot, A., O. Simeon, and J. Afolayan, "Comparative analysis of path loss prediction models for urban macrocellular environments," Nigerian Journal of Technology, Vol. 30, No. 3, 50-59, 2011. Google Scholar
18. Seybold, J. S., Introduction to RF Propagation, John Wiley & Sons Inc., 2005.
doi:10.1002/0471743690
19. Rappaport, T. S., Wireless Communications: Principles and Practice, 2nd Ed., Prentice Hall, 2002.
20. Ajose, S. O. and A. I. Imoize, "Propagation measurements and modelling at 1800 MHz in Lagos Nigeria," International Journal of Wireless and Mobile Computing, Vol. 6, No. 2, 154-173, 2013.
doi:10.1504/IJWMC.2013.054042 Google Scholar
21. Saunders, S. and A. Aragón-Zavala, Antennas and Propagation for Wireless Communication Systems, 2nd Ed., John Wiley & Sons Inc., 2007.
22. Milanovic, J., S. Rimac-Drlje, and I. S. Majerski, "Radiowave propagation mechanisms and empirical models for fixed wireless access systems," Technical Gazette, Vol. 17, No. 1, 43-52, 2010. Google Scholar
23. Beale, M. H., M. T. Hagan, and B. O. Howard, Neural Network ToolboxTM, User Guide, Vol. 7, R2011b, 2011.
24. Aibinu, A. M., A. A. Shafie, and M. J. Salami, "Performance analysis of ANN based YCbCr skin detection algorithm," Procedia Engineering, Vol. 41, 1183-1189, 2012.
doi:10.1016/j.proeng.2012.07.299 Google Scholar
25. Eichie, J. O., O. D. Oyedum, M. O. Ajewole, and A. M. Aibinu, "Artificial neural network model for the determination of GSM rxlevel from atmospheric parameters," Engineering Science and Technology, retrieved from http://dx.doi.org/10.1016/j.jestch.2016.11.002, 2016. Google Scholar
26. Ibeh, G. F. and G. A. Agbo, "Estimation of tropospheric refractivity with artificial neural network at Minna, Nigeria," Global Journal of Science Frontier Research Interdiciplinary, Vol. 2, No. 1, 8-14, 2012. Google Scholar
27. Litta, A. J., S. M. Idicula, and U. C. Mohanty, "Artificial neural network model in prediction of meteorological parameters during premonsoon thunderstorms," International Journal of Atmospheric Sciences, Vol. 10, 1-14, 2013.
doi:10.1155/2013/525383 Google Scholar
28. Philippopoulos, K. and D. Deligiorgi, "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Vol. 39, 75-82, 2012.
doi:10.1016/j.renene.2011.07.007 Google Scholar