1. Lewis, R. M., "Physical optics inverse diffraction," IEEE Transactions on Antennas and Propagation, Vol. 17, 308-314, 1969.
doi:10.1109/TAP.1969.1139417 Google Scholar
2. Farhat, N. H., T. Dzekov, and E. Ledet, "Computer simulation of frequency swept imaging," Proceedings of the IEEE, Vol. 64, 1453-1454, 1976.
doi:10.1109/PROC.1976.10354 Google Scholar
3. Chi, C. and N. H. Farhat, "Frequency swept tomographic imaging of three-dimensional perfectly conducting objects," IEEE Transactions on Antennas and Propagation, Vol. 29, 312-319, 1981.
doi:10.1109/TAP.1981.1142571 Google Scholar
4. Bojarski, N. N., "A survey of the physical optics inverse scattering identity," IEEE Transaction on Antennas and Propagation, Vol. 30, 980-989, 1982.
doi:10.1109/TAP.1982.1142890 Google Scholar
5. Ge, D. B., "A study of the Lewis method for target-shape reconstruction," Inverse Problems, Vol. 6, 363-370, 1990.
doi:10.1088/0266-5611/6/3/006 Google Scholar
6. Roger, A., "Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem," IEEE Transactions on Antennas and Propagation, Vol. 29, 980-989, 1981.
doi:10.1109/TAP.1981.1142588 Google Scholar
7. Kirsch, A., R. Kress, P. Monk, and A. Zinn, "Two methods for solving the inverse acoustic scattering problem," Inverse Problems, Vol. 4, 749-770, 1988.
doi:10.1088/0266-5611/4/3/013 Google Scholar
8. Colton, D. and P. Monk, "A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium," Inverse Problems, Vol. 5, 1013-1026, 1989.
doi:10.1088/0266-5611/5/6/009 Google Scholar
9. Otto, G. P. and W. C. Chew, "Microwave inverse scattering-local shape function imaging for improved resolution of strong scatterers," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 137-141, 1994.
doi:10.1109/22.265541 Google Scholar
10. Hettlich, F., "Two method for solving an inverse conductive scattering problem," Inverse Problems, Vol. 10, 375-385, 1994.
doi:10.1088/0266-5611/10/2/012 Google Scholar
11. Chiu, C. C. and P. T. Liu, "Image reconstruction of a perfectly conducting cylinder by the genetic algorithm," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 143, 253-259, 1996.
doi:10.1049/ip-map:19960363 Google Scholar
12. Tan, Y. and Y. Zhu, "Fireworks algorithm for optimization," International Conference on Swarm Intelligence (ICSI’2010), Beijing, China, June 12-15, 2010. Google Scholar
13. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, 397-407, 2004.
doi:10.1109/TAP.2004.823969 Google Scholar
14. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.
15. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.
16. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-time Signal Processing, Prentice Hall, 1999.
17. Bartels, R. H., J. C. Beatty, and B. A. Barsky, Hermite and Cubic Spline Interpolation, Morgan Kaufmann, 1998.
18. Rocca, P. and A. F. Morabito, "Optimal synthesis of reconfigurable planar arrays with simplified architectures for monopulse radar applications," IEEE Transactions on Antennas and Propagation, Vol. 63, 1048-1058, 2015.
doi:10.1109/TAP.2014.2386359 Google Scholar
19. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604 Google Scholar
20. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 37, 918-926, 1989.
doi:10.1109/8.29386 Google Scholar
21. Lee, K. C., "Genetic algorithms based analyses of nonlinearly loaded antenna arrays including mutual coupling effects," IEEE Transactions on Antennas and Propagation, Vol. 51, 776-781, 2003.
doi:10.1109/TAP.2003.814736 Google Scholar
22. Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi, "Optimization by simulated annealing," Science, Vol. 220, 671-680, 1983.
doi:10.1126/science.220.4598.671 Google Scholar