Vol. 60
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-09-07
Design of a Magneto-Electric Dipole Antenna for FM Radio Broadcasting Base Station Antenna Implementation
By
Progress In Electromagnetics Research M, Vol. 60, 75-84, 2017
Abstract
This work presents the design of a magneto-electric dipole (MED) antenna for the base station antenna of FM radio broadcasting implementation. The advantages of MED antenna are high gain, stable and symmetrical radiation patterns in both electric and magnetic planes, and low back lobe radiation pattern. The antenna was designed and studied to achieve the optimal dimensions of configuration parameters. The prototype antenna was fabricated and measured to validate its S11, radiation patterns, and gain. The impedance bandwidth was 33.49%, and the average gain was 7.78 dBi at the entire operating frequency (88-108 MHz). The measured results are in good agreement with the simulated ones.
Citation
Thunyawat Limpiti, Ajalawit Chantaveerod, and Wijittra Petchakit, "Design of a Magneto-Electric Dipole Antenna for FM Radio Broadcasting Base Station Antenna Implementation," Progress In Electromagnetics Research M, Vol. 60, 75-84, 2017.
doi:10.2528/PIERM17061906
References

1. Borrego, J. P. and N. B. Carvalho, "Harmful interferences to aeronautical radio communications arising from passive intermodulation," Proc. International Union of Radio Science, 2009.        Google Scholar

2. Razavi, B., RF Microelectronics, Prentice Hall, 1998.

3. LBA Group "RF interference analysis & intermodulation studies,", [Online], Available: https://www.lbagroup.com/services/intermodulation-studies-and-rf-interference-analysis.        Google Scholar

4. Softwright LLC "Finding, solving, and preventing intermodulation problems,", [Online], Available: http://www.softwright.com/faq/support/intermod_finding_solving.html.        Google Scholar

5. Urgen Communications "Solving intermodulation interference,", [Online], Available: http://urgentcomm.com/techspeak/radio_solving_intermodulation_interference.        Google Scholar

6. Report ITU-R SM.2021 "Production and mitigation of intermodulation products in the transmitter,", [Online], Available: http://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-SM.2021-2000-PDF-E.pdf.        Google Scholar

7. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, 2005.

8. Clavin, A., "A new antenna feed having equal E- and H-plane patterns," IRE Trans. Antennas Propagat., Vol. 2, 113-119, 1954.
doi:10.1109/T-AP.1954.27983        Google Scholar

9. Clavin, A., D. A. Huebner, and F. J. Kilburg, "An improved element for use in array antennas," IEEE Trans. Antennas Propagat., Vol. 22, No. 4, 521-526, Jul. 1974.
doi:10.1109/TAP.1974.1140845        Google Scholar

10. Luk, K. M. and H. Wong, "A new wideband unidirectional antenna element," Int. J. Microw. Opt. Technol., Vol. 1, No. 1, 35-44, 2006.        Google Scholar

11. Luk, K. M. and H. Wong, "A complementary wideband antenna,", U.S. Patent No. 11/373, 518, Mar. 10, 2006.        Google Scholar

12. Luk, K. M. and B. Q. Wu, "A broadband dual-polarized magneto-electric dipole antenna with simple feeds," IEEE Antennas Wireless Propagat. Lett., Vol. 8, 60-63, 2009.        Google Scholar

13. Luk, K. M. and B. Q. Wu, "A magneto-electric dipole with a modified ground plane," IEEE Antennas Wireless Propagat. Lett., Vol. 8, 627-629, 2009.        Google Scholar

14. Zhang, Z. Y., G. Fu, S. L. Zuo, and T. Ran, "A shorted magneto-electric dipole with Γ-shaped strip feed," Progress In Electromagnetics Research Letters, Vol. 12, 119-125, 2009.
doi:10.2528/PIERL09100804        Google Scholar

15. An, W. X., K. L. Lau, S. F. Li, and Q. Xue, "Wideband E-shaped dipole antenna with staircase-shaped feeding strip," Electron. Lett., Vol. 46, No. 24, 1583-1584, Nov. 2010.
doi:10.1049/el.2010.2890        Google Scholar

16. Ge, L. and K. M. Luk, "A wideband magneto-electric dipole antenna," IEEE Antennas Propagat., Vol. 60, No. 11, 4987-4991, Nov. 2012.
doi:10.1109/TAP.2012.2207689        Google Scholar

17. Zhang, Z. Y., S. L. Zuo, and J. Y. Zhao, "Wideband folded bowtie antenna with Γ-shaped strip feed and tuning stubs," Microw. Opt. Technol. Lett., Vol. 555, No. 9, 2145-2149, 2013.
doi:10.1002/mop.27754        Google Scholar

18. An, W. X., S. F. Li, W. Hong, F. Z. Han, and K. P. Chen, "Design of wideband dual-band dual-polarized dipole for base station antenna," Int. J. Electron. Commun., Vol. 19, No. 1, 22-28, Jun. 2012.        Google Scholar

19. Govindanarayanan, I., N. Rangaswamy, and R. Anbazhagan, "Design and analysis of broadband magneto-electric dipole antenna for LTE femtocell base stations," J. Comput. Electron., Vol. 15, No. 1, 200-209, Mar. 2016.
doi:10.1007/s10825-015-0759-0        Google Scholar

20. Isernia, T., A. Massa, A. F. Morabito, and P. Rocca, "On the optimal synthesis of phase-only reconfigurable antenna arrays," Proc. the 5th European Conf. Antennas Propagat. (EuCAP 2011), 2074-2077, Rome, Italy, Apr. 2011.        Google Scholar

21. Rocca, P. and A. F. Morabito, "Optimal synthesis of reconfigurable planar arrays with simplified architectures for monopulse radar applications," IEEE Trans. Antennas Propagat., Vol. 63, No. 3, 1048-1058, Mar. 2015.
doi:10.1109/TAP.2014.2386359        Google Scholar

22. CST Microwave Studio, , , 2011.