1. Seidel, C., I. Schwartz, and P. Kielhorn, "Helicopter collision avoidance and brown-out recovery with HELLAS," Proceedings of the SPIE Europe Security and Defence, International Society for Optics and Photonics, 71140G, Cardiff, UK, 2008. Google Scholar
2. Lynch, D., Introduction to RF Stealth, Scitech Publishing, 2004.
3. Skolnick, M., Radar Handbook, McGraw-Hill Companies, 2008.
4. Malaek, S. and A. Kosari, "Novel minimum time trajectory planning in terrain following flights," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, 2-12, 2007.
doi:10.1109/TAES.2007.357150 Google Scholar
5. Malaek, S. and A. Kosari, "Dynamic based cost functions for TF/TA flights," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, 44-63, 2012.
doi:10.1109/TAES.2012.6129620 Google Scholar
6. Finn, H. and R. Johnson, "Adaptive detection mode with threshold control as a function of spatially sampled clutter-level estimates," RCA Review, Vol. 29, 414-464, 1968. Google Scholar
7. Liu, N. N., J. W. Li, and Y. F. Cui, "A new detection algorithm based on CFAR for radar image with homogeneous background," Progress In Electromagnetics Research C, Vol. 15, 13-22, 2010.
doi:10.2528/PIERC10061201 Google Scholar
8. Weiss, M., "Analysis of some modified cell-averaging CFAR processors in multiple-target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 18, 102-114, 1982.
doi:10.1109/TAES.1982.309210 Google Scholar
9. Magaz, B., A. Belouchrani, and M. Hamadouche, "Automatic threshold selection in OS-CFAR radar detection using information theoretic criteria," Progress In Electromagnetics Research B, Vol. 30, 157-175, 2011.
doi:10.2528/PIERB10122502 Google Scholar
10. Khalighi, M. A. and M. H. Bastani, "Adaptive CFAR processor for nonhomogeneous environments," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, 889-897, 2000.
doi:10.1109/7.869508 Google Scholar
11. Sarma, A. and D. W. Tufts, "Robust adaptive threshold for control of false alarms," Signal Processing Letters, IEEE, Vol. 8, 261-263, 2001.
doi:10.1109/97.948451 Google Scholar
12. Tabet, L. and F. Soltani, "A generalized switching CFAR processor based on test cellstatistics," Signal, Image and Video Processing, Vol. 3, 265-273, 2009.
doi:10.1007/s11760-008-0075-2 Google Scholar
13. Kim, J. H. and M. R. Bell, "A computationally efficient CFAR algorithm based on a goodness-of-fit test for piecewise homogeneous environments," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, 1519-1535, 2013.
doi:10.1109/TAES.2013.6558002 Google Scholar
14. Maio, A. D., A. Farina, and G. Foglia, "Design and experimental validation of knowledge-based constant false alarm rate detectors," Radar, Sonar & Navigation, IET, Vol. 1, 308-316, 2007.
doi:10.1049/iet-rsn:20060113 Google Scholar
15. Wang, W., Y. Ji, and X. Lin, "A novel fusion-based ship detection method from pol-SAR images," Sensors, Vol. 15, 25072-25089, 2015.
doi:10.3390/s151025072 Google Scholar
16. Hammoudi, Z. and F. Soltani, "Distributed CA-CFAR and OS-CFAR detection using fuzzy spaces and fuzzy fusion rules," Radar, Sonar and Navigation, IEE Proceedings, IET, Vol. 151, 135-142, 2004.
doi:10.1049/ip-rsn:20040560 Google Scholar
17. Cao, T. T., "Constant false-alarm rate algorithm based on test cell information," Radar, Sonar & Navigation, IET, Vol. 2, 200-213, 2008.
doi:10.1049/iet-rsn:20070133 Google Scholar
18. Boudemagh, N. and Z. Hammoudi, "Automatic censoring CFAR detector for heterogeneous environments," AEU-International Journal of Electronics and Communications, Vol. 68, 1253-1260, 2014.
doi:10.1016/j.aeue.2014.07.006 Google Scholar
19. Berbra, K., M. Barkat, and A. Anou, "PN code acquisition using smart antenna and adaptive thresholding CFAR based on ordered data variability for CDMA communications," Progress In Electromagnetics Research B, Vol. 57, 139-155, 2014.
doi:10.2528/PIERB13092403 Google Scholar
20. Gini, F. and M. Rangaswamy, Knowledge Based Radar Detection, Tracking and Classification, John Wiley & Sons, 2008.
doi:10.1002/9780470283158
21. Jiang, W., Y. Huang, and J. Yang, "Automatic censoring CFAR detector based on ordered data difference for low-flying helicopter safety," Sensors, Vol. 16, 1055, 2016.
doi:10.3390/s16071055 Google Scholar
22. Trunk, G. V., "Range resolution of targets using automatic detectors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 14, 750-755, 1978.
doi:10.1109/TAES.1978.308625 Google Scholar
23. Smith, M. E. and P. K. Varshney, "Intelligent CFAR processor based on data variability," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, 837-847, 2000.
doi:10.1109/7.869503 Google Scholar
24. Tan, Y., Q. Li, Y. Li, and J. Tian, "Aircraft detection in high-resolution SAR images based on a gradient textural saliency map," Sensors, Vol. 15, 23071-23094, 2015.
doi:10.3390/s150923071 Google Scholar
25. Rohling, H., "Radar CFAR thresholding in clutter and multiple target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 19, 608-621, 1983.
doi:10.1109/TAES.1983.309350 Google Scholar
26. Gandhi, P. P. and S. A. Kassam, "Analysis of CFAR processors in nonhomogeneous background," IEEE Transactions on Aerospace and Electronic Systems, Vol. 24, 427-445, 1988.
doi:10.1109/7.7185 Google Scholar
27. Rickard, J. T. and G. M. Dillard, "Adaptive detection algorithms for multiple-target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 13, 338-343, 1977.
doi:10.1109/TAES.1977.308466 Google Scholar
28. Himonas, S. D. and M. Barkat, "Automatic censored CFAR detection for nonhomogeneous environments," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, 286-304, 1992.
doi:10.1109/7.135454 Google Scholar
29. Farrouki, A. and M. Barkat, "Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments," Radar, Sonar and Navigation, IEE Proceedings, IET, Vol. 152, 43-51, 2005.
doi:10.1049/ip-rsn:20045006 Google Scholar
30. Zaimbashi, A. and Y. Norouzi, "Automatic dual censoring cell-averaging CFAR detector in nonhomogenous environments," Signal Processing, Vol. 88, 2611-2621, 2008.
doi:10.1016/j.sigpro.2008.04.016 Google Scholar
31. Kononov, A. A., J. H. Kim, J. K. Kim, and G. Kim, "A new class of adaptive CFAR methods for nonhomogeneous environments," Progress In Electromagnetics Research B, Vol. 64, 145-170, 2015.
doi:10.2528/PIERB15091603 Google Scholar
32. Arnaudon, M., L. Yang, and F. Barbaresco, "Stochastic algorithms for computing p-means of probability measures, geometry of radar Toeplitz covariance matrices and applications to HR Doppler processing," Radar Symposium (IRS), 2011 Proceedings International, 651-656, 2011. Google Scholar
33. Arnaudon, M., F. Barbaresco, and L. Yang, "Riemannian medians and means with applications to radar signal processing," IEEE Journal of Selected Topics in Signal Processing, Vol. 7, 595-604, 2013.
doi:10.1109/JSTSP.2013.2261798 Google Scholar
34. Aubry, A., A. D. Maio, L. Pallotta, and A. Farina, "Covariance matrix estimation via geometric barycenters and its application to radar training data selection," Radar, Sonar & Navigation, IET, Vol. 7, 600-614, 2013.
doi:10.1049/iet-rsn.2012.0190 Google Scholar
35. Aubry, A., A. D. Maio, L. Pallotta, and A. Farina, "Median matrices and their application to radar training data selection," Radar, Sonar & Navigation, IET, Vol. 8, 265-274, 2013.
doi:10.1049/iet-rsn.2013.0043 Google Scholar
36. Li, N., G. Cui, X. Yang, and L. Kong, "Performance assessment for geometric-based covariance estimation in heterogeneous clutter," IET International Radar Conference, 1-5, 2015. Google Scholar
37. Cui, G., N. Li, L. Pallotta, G. Foglia, and L. Kong, "Geometric barycenters for covariance estimation in compound gaussian clutter," Radar, Sonar & Navigation, IET, Vol. 11, 404-409, 2017.
doi:10.1049/iet-rsn.2016.0092 Google Scholar
38. Weinberg, G. V., Radar Detection Theory of Sliding Window Processes, CRC Press, 2017.
doi:10.1201/9781315154015
39. Sanz-Gonzalez, J. L. and F. Alvarez-Vaquero, "Nonparametric rank detectors under K-distributed clutter in radar applications," Aerospace and Electronic Systems, IEEE Transactions on, Vol. 41, 702-710, 2005.
doi:10.1109/TAES.2005.1468759 Google Scholar
40. Maio, A. D. and M. S. Greco, Modern Radar Detection Theory, SciTech Publishing, 2016.
41. Orlando, D., F. Bandiera, and G. Ricci, "Advanced Radar Detection Schemes Under Mismatched Signal Models," Morgan and Claypool Publishers, 2009. Google Scholar
42. Maio, A. D., "Rao test for adaptive detection in gaussian interference with unknown covariance matrix," IEEE Transactions on Signal Processing, Vol. 55, 3577-3584, 2007.
doi:10.1109/TSP.2007.894238 Google Scholar
43. Richards, M. A., J. A. Scheer, and W. A. Holm, Principles of Modern Radar: Basic Principles, SciTech Publishing, 2010.
doi:10.1049/SBRA021E
44. Wang, C., M. Liao, and X. Li, "Ship detection in SAR image based on the alpha-stable distribution," IEEE Signal Processing Letters, Vol. 8, 4948-4960, 2008. Google Scholar
45. Meng, X., "Performance analysis of ordered-statistic greatest of-constant false alarm rate with binary integration for M-sweeps," Radar, Sonar & Navigation, IET, Vol. 4, 37-48, 2010.
doi:10.1049/iet-rsn.2008.0119 Google Scholar
46. Pourmottaghi, A., M. Taban, and S. Gazor, "A CFAR detector in a nonhomogenous Weibull clutter," Aerospace and Electronic Systems, IEEE Transactions on, Vol. 48, 1747-1758, 2012.
doi:10.1109/TAES.2012.6178094 Google Scholar
47. Weinberg, G. V., "Asymptotic performance of the geometric mean detector in pareto distributed clutter," IEEE Signal Processing Letters, Vol. 23, 1538-1542, 2016.
doi:10.1109/LSP.2016.2602362 Google Scholar
48. Habib, M. A., M. Barkat, B. Aissa, and T. A. Denidni, "CA-CFAR detection performance of radar targets embedded in ‘non centered chi-2 gamma’ clutter," Progress In Electromagnetics Research, Vol. 88, 135-148, 2008.
doi:10.2528/PIER08092203 Google Scholar
49. Gao, Y., R. Zhan, J. Wan, J. Hu, and J. Zhang, "CFAR target detection in ground SAR image based on KK distribution," Progress In Electromagnetics Research, Vol. 139, 721-742, 2013.
doi:10.2528/PIER13031602 Google Scholar
50. Kong, L. J., X. Y. Peng, and T. X. Zhang, "A homogenous reference cells selector for CFAR detector in highly heterogeneous environment," Progress In Electromagnetics Research C, Vol. 41, 175-188, 2013.
doi:10.2528/PIERC13052604 Google Scholar
51. Yang, M., G. Zhang, C. Guo, and M. Sun, "A coarse-to-fine approach for ship detection in SAR image based on CFAR algorithm," Progress In Electromagnetics Research M, Vol. 35, 105-111, 2014.
doi:10.2528/PIERM14012201 Google Scholar
52. Cui, G., A. Maio, V. Carotenuto, and L. Pallotta, "Performance prediction of the incoherent detector for a weibull fluctuating target," IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, 2176-2184, 2014.
doi:10.1109/TAES.2014.130040 Google Scholar
53. Cui, G., A. D. Maio, and M. Piezzo, "Performance prediction of the incoherent radar detector for correlated generalized Swerling-chi fluctuating targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, 356-368, 2013.
doi:10.1109/TAES.2013.6404108 Google Scholar
54. El Mashade, M. B., "Analysis of CFAR detection of fluctuating targets," Progress In Electromagnetics Research C, Vol. 2, 65-94, 2008.
doi:10.2528/PIERC08020802 Google Scholar