Electrical and Electronic Engineering
Universiti Malaysia Sarawak
Malaysia
HomepageElectrical and Electronic Engineering
University Malaysia Sarawak
Malaysia
HomepageDepartment of Electrical and Electronic Engineering, Faculty of Engineering
Universiti Malaysia Sarawak
Malaysia
HomepageDepartment of Electrical and Electronic Engineering, Faculty of Engineering
Universiti Putra Malaysia
Malaysia
HomepageDepartment of Electrical and Electronic Engineering, Faculty of Engineering
Universiti Putra Malaysia
Malaysia
Homepage1. National Research Funding "Addressing the historic underfunding of brain tumour research,", Milton Keyness, England, 2016. Google Scholar
2. American Brain Tumour Association "Brain tumour statistics," National Research Funding, [Online], Available: http://www.abta.org/about-us/news/brain-tumor-statistics/, Accessed: Dec. 30, 2016.
doi:10.1227/01.NEU.0000073546.61154.9A Google Scholar
3. Chang, E. L., S. J. Hassenbusch, S. S. Almon, F. F. Lang, P. L. Allen, R. Sawaya, and M. H. Maor, "The role of tumour size in the Radio Surgical management of Patients with ambiguous brain metastases," Neurosurgery, Vol. 53, No. 2, 272-281, 2003.
doi:10.1109/LAWP.2013.2247018 Google Scholar
4. Hossain, M. D., A. S. Mohan, and M. J. Abedin, "Beamspace time-reversal microwave imaging for breast cancer detection," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 241-244, 2013.
doi:10.1109/LAWP.2013.2255095 Google Scholar
5. Mustafa, S., B. Mohammed, and A. Abbosh, "Novel preprocessing techniques for accurate microwave imaging of human brain," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 460-463, 2013.
doi:10.1109/TMTT.2014.2342669 Google Scholar
6. Mobashsher, A. T., A. M. Abbosh, and Y. Wang, "Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 9, 1826-1836, 2014.
doi:10.1109/TIM.2010.2045540 Google Scholar
7. Henriksson, T., N. Joachimowicz, C. Conessa, and J. Bolomey, "Quantitative microwave imaging for breast cancer detection using a planar 2.45 GHz system," IEEE Trans. Instrum. Meas., Vol. 59, No. 10, 2691-2699, 2010.
doi:10.1109/TIM.2013.2277562 Google Scholar
8. Mohammed, B. J., A. M. Abbosh, S. Mustafa, and D. Ireland, "Microwave system for head imaging," IEEE Trans. Instrum. Meas., Vol. 63, No. 1, 117-123, 2014. Google Scholar
9. Al Sharkawy, M., M. Sharkas, and D. Ragab, "Breast cancer detection using support vector machine technique applied on extracted electromagnetic waves," Appl. Comput. Electromagn. Soc. J., Vol. 27, No. 4, 292-301, 2012. Google Scholar
10. Alqallaf, A. K., R. K. Dib, and S. F. Mahmoud, "Microwave imaging using synthetic radar scheme processing for the detection of breast tumours," Appl. Comput. Electromagn. Soc. J., Vol. 31, No. 2, 98-105, 2016. Google Scholar
11. Bowman, T. C., A. M. Hassan, and M. El-shenawee, "Imaging 2D breast cancer tumour margin at terahertz frequency using numerical field data based on DDSCAT," Appl. Comput. Electromagn. Soc. Journal, Vol. 28, No. 11, 1017-1024, 2013. Google Scholar
12. Takenaka, T., H. Jia, and T. Tanaka, "Microwave imaging of electrical property distributions by a forward-backward time-stepping method," J. Electromagn. Waves Apllied, Vol. 14, No. 12, 1611-1628, 2000.
doi:10.1109/URSI-EMTS.2010.5637368 Google Scholar
13. Takenaka, T., T. Moriyama, K. A. Hong Ping, and T. Yamasaki, "Microwave breast imaging by the filtered forward-backward time-stepping method," 2010 URSI International Symposium on Electromagnetic Theory, 946-949, 2010.
doi:10.1109/TBME.2007.899364 Google Scholar
14. Johnson, J. E., T. Takenaka, and T. Tanaka, "Two-dimensional time-domain inverse scattering for quantitative analysis of breast composition," IEEE Trans. Biomed. Eng., Vol. 55, No. 8, 1941-1945, 2008. Google Scholar
15. Ping, K. A. H., T. Moriyama, T. Takenaka, and T. Tanaka, "Two-dimensional forward-backward time-stepping approach for tumor detection in dispersive breast tissues," Mediterranean Microwave Symposium, MMS 2009, 2009. Google Scholar
16. Cocosco, C. A., V. Kollokian, R. K. S., and A. C. Kwan, "BrainWe: online interface to a 3D MRI simulated brain database," Neuro Image, Vol. 5, No. 4, 1997. Google Scholar
17. "Brainweb: simulated brain database," McConnel Brain Imaging Centre, [Online], Available: http://brainweb.bic.mni.mcgill.ca/. (Accessed: 24-Oct-2015). Google Scholar
18. Canada, H., "Limits of human exposure to radio frequency electromagnetic energy in the frequency range from 3 kHz to 300 GHz," Saf. Code, 2015.
doi:10.1109/MMW.2003.1266063 Google Scholar
19. Lin, J. C., "Safety standard for human exposure to radio frequency radiation and their biological rationale," IEEE Microwave Magazine, Vol. 4, No. 4, 22-26, 2003.
doi:10.1049/cp:20080454 Google Scholar
20. Ping, K. A. H., T. Moriyama, T. Takenaka, and T. Tanaka, "Reconstruction of breast composition in a free space utilizing 2-D forward-backward time-stepping for breast cancer detection," 4th IET International Conference on Advances in Medical, Signal and Information Processing (MEDSIP 2008), 313, 2008.
doi:10.1109/ICBAPS.2015.7292222 Google Scholar
21. Yong, G., K. A. Hong Ping, A. Sia Chew Chie, S. W. Ng, and T. Masri, "Preliminary study of Forward-Backward Time-Stepping technique with edge-preserving regularization for object detection applications," 2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), 77-81, 2015.
doi:10.2528/PIERM16051907 Google Scholar
22. Ng, S. W., K. A. H. Ping, S. Sahrani, M. H. Marhaban, M. I. Saripan, T. Moriyama, and T. Takenaka, "Preliminary results on estimation of the dispersive dielectric properties of an object utilizing frequency-dependent forward-backward time-stepping technique," Progress In Electromagnetics Research M, Vol. 49, 61-68, 2016.
doi:10.1109/TBME.2009.2022635 Google Scholar
23. Johnson, J. E., T. Takenaka, K. A. H. Ping, S. Honda, and T. Tanaka, "Advances in the 3-D forward-backward time-stepping (FBTS) inverse scattering technique for breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 56, No. 9, 2232-2243, 2009.
doi:10.1109/LAWP.2014.2376981 Google Scholar
24. Giannakis, I. and A. Giannopoulos, "Time synchronized convolutional perfectly matched layer for improved absorbing performance in FDTD," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 690-693, 2015.
doi:10.1109/9780470544518 Google Scholar
25. Sullivan, D. M., Electromagnetic Simulations Using the FDTD Method, IEEE Press Marketing, 2000.
26. Vala, H. J. and A. Baxi, "A review on Otsu image segmentation algorithm," Int. J. Adv. Res. Comput. Eng. Technol., Vol. 1, No. 4, 387-389, 2013.
doi:10.1109/TSMC.1979.4310076 Google Scholar
27. Otsu, N., "A threshold selection method from gray level histogram," IEEE Trans. Syst. Man. Cybern., Vol. 9, 62-66, 1979. Google Scholar
28. Khan, W., "Image segmentation techniques: A survey," J. Image Graph., Vol. 2, No. 1, 6-9, 2013. Google Scholar
29. Liao, P. S., T. S. Chen, and P. C. Chung, "A fast algorithm for multilevel thresholding," J. Inf. Sci. Eng., Vol. 17, 713-727, 2001.
doi:10.1109/TAP.2013.2296323 Google Scholar
30. Mustafa, S., A. M. Abbosh, and P. T. Nguye, "Modeling human head tissues using fourth-order Debye model in convolution-based three-dimensional finite-difference time-domain," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1354-1361, 2014.
doi:10.1002/bem.20021 Google Scholar
31. Yoo, D.-S., "The dielectric properties of cancerous tissues in a nude mouse xenograft model," Bioelectromagnetics, Vol. 25, No. 7, 492-497, Oct. 2004.
doi:10.1109/CEEM.2015.7368656 Google Scholar
32. Thourn, K., T. Aoyagi, and J. Takada, "Numerical simulation of 2D scattering by a lossy dielectric cylinder using Debye modelling of absorbing material and pulse excitation source," 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), 165-168, 2015.
doi:10.1088/0031-9155/52/8/013 Google Scholar
33. Peyman, A., S. J. Holden, S. Watts, R. Perrott, and C. Gabriel, "Dielectric properties of porcine cerebrospinal tissues at microwave frequencies: in vivo, in vitro and systematic variation with age," Phys. Med. Biol., Vol. 52, No. 8, 2229-2245, Apr. 2007.
doi:10.1088/0031-9155/54/2/004 Google Scholar
34. Peyman, A., C. Gabriel, E. H. Grant, G. Vermeeren, and L. Martens, "Variation of the dielectric properties of tissues with age: The effect on the values of SAR in children when exposed to walkie-talkie devices," Phys. Med. Biol., Vol. 54, No. 2, 227-241, Jan. 2009. Google Scholar