Vol. 60
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-10-05
High Power Over-Mode Bent Waveguides for Circular TM01 and Coaxial TEM Mode Transmission
By
Progress In Electromagnetics Research M, Vol. 60, 189-196, 2017
Abstract
Three bent waveguides are proposed and investigated, two for circular waveguide TM01 mode transmission and one for coaxial TEM mode transimission. For high power-handling capacity, all of them are over-mode waveguides. In the bend, circular or coaxial waveguides transmitting only sector waveguide TE11 modes are split into several same sector waveguides by metal plates and metal rod. Those sector waveguides are grouped by their lengths. Different lengths of sector waveguides mean there are phase differences of the TE11 modes after bending. Due to requirements of mode conversion, the phase difference regulated by radii of circular waveguide and metal rod must be 2nπ, n = 0, 1, 2…. Since the phase difference is independent of bend radius, the radius could be as small as possible. One of the prototypes is experimented, and the test result of the VSWR shows that simulation has good match with experiment. Insertion loss is 0.2 dB at 8.4 GHz, which proves the feasibility of the prototype.
Citation
Xiaomeng Li, Xiang-Qiang Li, Qing-Xiang Liu, and Jianqiong Zhang, "High Power Over-Mode Bent Waveguides for Circular TM01 and Coaxial TEM Mode Transmission," Progress In Electromagnetics Research M, Vol. 60, 189-196, 2017.
doi:10.2528/PIERM17080901
References

1. Barker, R. J. and E. Schamiloglu, High-Power Microwave Sources and Technologies, 2001.
doi:10.1109/9780470544877

2. Schamiloglu, E. and K. H. Schoenbach, "Basic research on pulsed power for narrowband high-power microwave sources," Proceedings of SPIE - The International Society for Optical Engineering, Vol. 4720, 1-9, 2002.        Google Scholar

3. Bacon, L. D. and L. F. Rinehart, "A brief technology survey of high-power microwave sources," Office of Scientific & Technical Information Technical Reports, 2001.        Google Scholar

4. Li, X. Q., Q. X. Liu, X. J. Wu, L. Zhao, J. Q. Zhang, and Z. Q. Zhang, "A GW level high-power radial line helical array antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 9, 2943-2948, Sept. 2008.
doi:10.1109/TAP.2008.928781        Google Scholar

5. Li, X. Q., Q. X. Liu, J. Q. Zhang, et al. "16-element single-layer rectangular radial line helical array antenna for high-power applications," IEEE Antennas & Wireless Propagation Letters, Vol. 9, No. 1, 708-711, 2010.
doi:10.1109/LAWP.2010.2059371        Google Scholar

6. Li, X. Q., Q. X. Liu, and J. Q. Zhang, "High power 12-element triangular-grid rectangular radial line helical array antenna," Progress In Electromagnetics Research C, Vol. 55, 17-24, 2014.
doi:10.2528/PIERC14100402        Google Scholar

7. Li, X. Q., Q. X. Liu, and J. Q. Zhang, "Double-layer radial line helical array antenna with rectangular aperture," Progress In Electromagnetics Research Letters, Vol. 31, 15-24, 2012.
doi:10.2528/PIERL12011005        Google Scholar

8. Yuan, C., H. Zhong, and B. Qian, "Design of bend circular waveguides for high-power microwave applications," High Power Laser and Particle Beams, Vol. 2, 020, 2009.        Google Scholar

9. Ding, Y., Q. Liu, and J. Zhang, "Design and experiment study of overmode bend circular waveguide," High Power Laser & Particle Beams, Vol. 23, No. 8, 2135-2140, 2011.
doi:10.3788/HPLPB20112308.2135        Google Scholar

10. Van Hese, J. and D. De Zutter, "Modeling of discontinuities in general coaxial waveguide structures by the FDTD-method," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 3, 547-556, Mar. 1992.
doi:10.1109/22.121731        Google Scholar

11. Chittora, A., S. Singh, A. Sharma, and J. Mukherjee, "Design of wideband coaxial-TEM to circular waveguide TM01 mode transducer," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, Davos, 2016.        Google Scholar

12. Li, X. M., X. Q. Li, Q. X. Liu, and J. Q. Zhang, "Novel overmode circular waveguide bend for high power TM01 mode transmission," 2017 IEEE AP-S Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2223-2224, San Diego, California, USA, Jul. 9-14, 2017.        Google Scholar

13. Yuan, C. W., Q. X. Liu, H. H. Zhong, et al. "A novel TEM-TE11 mode converter," IEEE Microwave & Wireless Components Letters, Vol. 15, No. 8, 513-515, 2005.
doi:10.1109/LMWC.2005.852786        Google Scholar

14. Yuan, C. W., H. H. Zhong, Q. X. Liu, et al. "A novel TM01-TE11 Circularly Polarized (CP) mode converter," IEEE Microwave & Wireless Components Letters, Vol. 16, No. 8, 455-457, 2006.
doi:10.1109/LMWC.2006.879486        Google Scholar

15. Jameson, R. A., "High-brightness H-accelerators," 1987 Particle Accelerator Conference, 903, Washington, D.C., IEEE Catalog No. 87CH2387-9, Mar. 16-19, 1987.        Google Scholar