Vol. 64
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-14
Analysis of Aperture Field Uniformity for Biological Experiments
By
Progress In Electromagnetics Research M, Vol. 64, 193-200, 2018
Abstract
The uniformity of the incident electromagnetic radiofrequency fields (RF) is an important factor that can influence the results in biological in vivo and/or in vitro exposure experiments using animals and humans or their cells. The International Electrotechnical Commission (IEC) has published IEC 61000-4-20 standard which defined field uniformity criteria for emission and immunity testing in a defined region in transverse electromagnetic (TEM) waveguides. In this paper, we present a numerical analysis method to determine aperture field uniformity in biological experiments according to IEC 61000-4-20:2010 standard. With the numerical analysis method, the uniformity of electromagnetic field can be analyzed in Cartesian coordinates system by aperture-field method (AFM). Then, with the simultaneous application of AFM and the field uniformity criteria defined by IEC 61000-4-20:2010, the two functions can be programmed to evaluate the field uniformity in region of interest (ROI) which can then be meshed into the given observation points where biological examples are exposed to RF. At the specified position of ROI along z far from the aperture of the WR-430 rectangular open-ended waveguide, the field and the minimum uniform distances vs. frequencies can be calculated by AFM. Thus, the results of the numerical analysis method can be applied to design the exposure setups for biological experiments with the field uniformity required in ROI.
Citation
Honglong Cao Xueguan Liu Fenju Qin Heming Zhao , "Analysis of Aperture Field Uniformity for Biological Experiments," Progress In Electromagnetics Research M, Vol. 64, 193-200, 2018.
doi:10.2528/PIERM17111301
http://www.jpier.org/PIERM/pier.php?paper=17111301
References

1. Kim, J. and Y. Rahmat-Samii, "Implanted antennas inside a human body simulations, designs and characterizations," IEEE Trans. Microw. Theory Tech., Vol. 52, 1934-1943, Aug. 2004.
doi:10.1109/TMTT.2004.832018

2. Xia, W., K. Saito, M. Takahashi, and K. Ito, "Performances of an implanted cavity slot antenna embedded in the human arm," IEEE Trans. Antennas Propagat., Vol. 57, 894-899, Apr. 2009.
doi:10.1109/TAP.2009.2014579

3. Liu, C., Y. X. Guo, H. Sun, and S. Xiao, "Design and safety considerations of an implantable rectenna for far-field wireless power transfer," IEEE Trans. Antennas Propagat., Vol. 62, 5798-5806, Aug. 2014.
doi:10.1109/TAP.2014.2352363

4. Miquel, A. G., S. Curto, N. Vidal, J. M. Lopez-Villegas, F. M. Ramos, and P. Prakash, "Multilayered broadband antenna for compact embedded implantable medical devices: Design and characterization," Progress In Electromagnetics Research, Vol. 159, 1-13, Apr. 2017.
doi:10.2528/PIER16121507

5. Sannino, A., M. L. Calabrese, G. D'Ambrosio, R. Massa, G. Petraglia, P. Mita, M. Sarti, and M. R. Sacrfiscarfi, "Evaluation of cytotoxic and genotoxic effects in human peripheral blood leukocytes following exposure to 1950-MHz modulated signal," IEEE Trans. Plasma Sci., Vol. 34, 1331-1448, Aug. 2006.
doi:10.1109/TPS.2006.878379

6. Adan, D., C. Remacl, and A. V. Vorst, "Results of a long-term low-level microwave exposure of rats," IEEE Trans. Microw. Theory Tech., Vol. 57, 2488-2497, Sep. 2009.
doi:10.1109/TMTT.2009.2029667

7. Qin, F., J. Zhang, H. Cao, W. Guo, L. Chen, O. Shen, J. Sun, Y. Cao, J. Wang, and J. Tong, "Circadian alterations of reproductive functional markers in male rats exposed to 1800 MHz radiofrequency field," Chronobiol. Int., Vol. 31, 123-133, Jan. 2013.
doi:10.3109/07420528.2013.830622

8. Kwon, M. S. and H. Hämäläinen, "Effects of mobile phone electromagnetic fields: Critical evaluation of behavioral and neurophysiological studies," Bioelectromagnetics, Vol. 32, 253-272, Dec. 2011.
doi:10.1002/bem.20635

9. Paffi, A., F. Apollonio, G. A. Lovisolo, C. Marino, R. Pinto, M. Repacholi, and M. Liberti, "Considerations for developing an RF exposure system: A review for in vitro biological experiments," IEEE Trans. Antennas Propagat., Vol. 58, 2702-2714, Oct. 2010.

10. Calabrese, M. L., G. d'Ambrosio, R. Massa, and G. Petraglia, "A high efficiency waveguide applicator for in vitro exposure of mammalian cells at 1.95 GHz," IEEE Trans. Microw. Theory Techn., Vol. 54, 2256-2262, May 2006.
doi:10.1109/TMTT.2006.872784

11. Romeo, S., C. D’Avino, D. Pinchera, O. Zeni, M. R. Scarfì, and R. Massa, "A waveguide applicator for In Vitro exposures to single or multiple ICT frequencies," IEEE Trans. Microw. Theory Tech., Vol. 61, 1994-2004, May 2013.
doi:10.1109/TMTT.2013.2246185

12. IEC 61000-4-20, "Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques, Section 20: Emission and immunity testing in transverse electromagnetic (TEM) waveguides," International Electrotechnical Commission, 2010.

13. Zhong, S., Antenna Theory and Technoiques, Publishing House of Electronics Industry, Beijing, 2011.

14. Silver, S., Microwave Antenna Theory and Design, McGraw-Hill Book Co, London, 2008.