Vol. 70
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-12
Complex Permittivity Estimation for Each Layer in a BI-Layer Dielectric Material at Ku-Band Frequencies
By
Progress In Electromagnetics Research M, Vol. 70, 109-116, 2018
Abstract
In this paper, a new measurement method is proposed to estimate the complex permittivity for each layer in a bi-layer dielectric material using a Ku-band rectangular waveguide WR62. The Sij-parameters at the reference planes in the rectangular waveguide loaded by a bi-layer material sample are measured as a function of frequency using the E8634A Network Analyzer. Also, by applying the transmission lines theory, the expressions for these parameters as a function of complex permittivity of each layer are calculated. The Nelder-Mead algorithm is then used to estimate the complex permittivity of each layer by matching the measured and calculated the Sij-parameters. This method has been validated by estimating, at the Ku-band, the complex permittivity of each layer of three bi-layer dielectric materials. A comparison of estimated values of the complex permittivity obtained from bi-layer measurements and mono-layer measurements is presented.
Citation
Lahcen Ait Benali, Abdelwahed Tribak, Jaouad Terhzaz, and Angel Mediavilla Sanchez, "Complex Permittivity Estimation for Each Layer in a BI-Layer Dielectric Material at Ku-Band Frequencies," Progress In Electromagnetics Research M, Vol. 70, 109-116, 2018.
doi:10.2528/PIERM18010813
References

1. Gupta, K. and P. S. Hall, "Analysis and Design of Integrated Circuit-Antenna Modules," 247-248, Wiley, 1999.

2. Chakravarty, S. and R. Mittra, "Application of the micro-genetic algorithm to the design of spatial filters with frequency-selective surfaces embedded in dielectric media," IEEE Trans. Electromagn. Compat., Vol. 44, No. 2, 338-346, 2002.
doi:10.1109/TEMC.2002.1003399

3. Deshpande, M. D. and K. Dudley, "Estimation of complex permittivity of composite multilayer material at microwave frequency using waveguide measurements," NASA Langley Res., 212-398, 2003.

4. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "A freespace method for measurement of dielectric constants and loss tangents at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 38, 789-793, 1989.
doi:10.1109/19.32194

5. Ligthart, L. P., "A fast computational technique for accurate permittivity determination using transmission line methods," IEEE Trans. MTT, Vol. 31, No. 3, 249-254, 1983.
doi:10.1109/TMTT.1983.1131471

6. Hasar, U. C., "Permittivity measurement of thin dielectric materials from reflection-only measurements using one-port vector network analyzers," Progress In Electromagnetics Research, Vol. 95, 365-380, 2009.
doi:10.2528/PIER09062501

7. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.
doi:10.2528/PIER10060805

8. Baker-Jarvis, J., Transmission/Reflection and Short-Circuit Line permittivity Measurements, National Institute of Standards and Technology, Boulder, Colorado, 1990.

9. Elmajid, H., J. Terhzaz, H. Ammor, M. Chabi, and A. Mediavilla, "A new method to determine the complex permittivity and complex permeability of dielectric materials at X-band frequencies," IJMOT, Vol. 10, No. 1, 34-39, 2015.

10. Nelder, J. and R. Mead, "A simplex method for function minimization," Computer SXSX Journal, Vol. 7, No. 4, 308-313, 1965.
doi:10.1093/comjnl/7.4.308

11. Optimization Toolbox User’s Guide, The MathWorks, Version 7.5, 2016.