Vol. 68
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-23
Inertial Properties of the TE Waveguide Fields
By
Progress In Electromagnetics Research M, Vol. 68, 11-19, 2018
Abstract
Inertial properties of the TE-waveguide modal fields are studied in time-domain making use of an analytical method, named as evolutionary approach to electrodynamics (EAE). To achieve inertial characteristics, electric field vector with dimension of volt per meter and magnetic field vector with dimension of ampere per meter in Maxwell's equations are factorized in SI units to obtain new electric and magnetic field vectors with their common dimensions of inverse meter. Having the fields with the common dimensions makes them summable. Using EAE, modal basis elements that depend on transverse coordinates and modal amplitudes that depend on time and longitudinal coordinate are obtained by solving the boundary eigenvalue problem. As a result of using the new electric and magnetic field vectors, the energetic properties are derived as real-valued functions of coordinates and time. Then, the inertial properties (that is, electromagnetic mass and momentum) of the TE-waveguide modes are obtained as the functions of time.
Citation
Fatih Erden, Oleg Tretyakov, and Ahmet Arda Cosan, "Inertial Properties of the TE Waveguide Fields," Progress In Electromagnetics Research M, Vol. 68, 11-19, 2018.
doi:10.2528/PIERM18020609
References

1. Strutt, J. W. (Lord Rayleigh), "On the passage of electric waves through tubes, or the vibrations of dielectric cylinders," Philos. Mag., Vol. 43, 125-132, 1897.
doi:10.1080/14786449708620969

2. White, H., et al. "Measurement of impulsive thrust from a closed radio-frequency cavity in vacuum," Journal of Propulsion and Power, Vol. 33, No. 4, 830-841, 2017.
doi:10.2514/1.B36120

3. He, Y., J. Shen, and S. He, "Consistent formalism for the momentum of electromagnetic waves in lossless dispersive metamaterials and the conservation of momentum," Progress In Electromagnetics Research, Vol. 116, 81-106, 2011.
doi:10.2528/PIER11032006

4. Millis, M. G., "Inertial frames and breakthrough propulsion physics," Acta Astronautica, Vol. 138, 85-94, 2017.
doi:10.1016/j.actaastro.2017.05.028

5. Kaiser, G., "Electromagnetic inertia, reactive energy and energy flow velocity," J. Phys. A, Math. Theor., Vol. 44, 345206, 2011.
doi:10.1088/1751-8113/44/34/345206

6. Tretyakov, O. A., "Essentials of nonstationary and nonlinear electromagnetic field theory," Chapter 3 in Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, and O. A. Tretyakov, Editors, Science House Co. Ltd., Tokyo, 1993.

7. Tretyakov, O. A. and F. Erden, "Evolutionary approach to electromagnetics as an alternative to the time-harmonic field method," IEEE APS/URSI Meeting, July 8–14, 2012, Chicago, US, https://doi.org/10.13140/2.1.2283.4242.

8. Aksoy, S. and O. A. Tretyakov, "Evolution equations for analytical study of digital signals in waveguides," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 12, 1665-1682, 2003.
doi:10.1163/156939303322760209

9. Tretyakov, O. A., "Factorizing physical dimensions of the quantities ingressed in Maxwell’s Equations in SI units," Progress In Electromagnetics Research Symposium, St. Petersburg, Russia, May 22–25, 2017.

10. Erden, F. and O. A. Tretyakov, "Mechanical properties of the waveguide modal fields in the time domain," Progress In Electromagnetics Research Symposium, St. Petersburg, Russia, May 22–25, 2017.

11. Erden, F. and O. A. Tretyakov, "Excitation by a transient signal of the real-valued electromagnetic fields in a cavity," Phys. Rev. E, Vol. 77, 056605, 2008.
doi:10.1103/PhysRevE.77.056605

12. Erden, F., "Evolutionary approach to solve a novel time-domain cavity problem," IEEE Trans. Antennas Propag., Vol. 65, No. 11, 5918-5931, 2017.
doi:10.1109/TAP.2017.2752240

13. Tretyakov, O. A. and O. Akgun, "Derivation of Klein-Gordon equation from Maxwell’s equations and study of relativistic time-domain waveguide modes," Progress In Electromagnetics Research, Vol. 105, 171-191, 2010.
doi:10.2528/PIER10042702

14. Tretyakov, O. A. and M. Kaya, "The real-valued time-domain TE-modes in lossy waveguides," Progress In Electromagnetics Research, Vol. 127, 405-426, 2012.
doi:10.2528/PIER12031402

15. Tretyakov, O. A. and M. Kaya, "Time-domain real-valued TM-modal waves in lossy waveguides," Progress In Electromagnetics Research, Vol. 138, 675-696, 2013.
doi:10.2528/PIER13030206

16. Akgun, O. and O. A. Tretyakov, "Solution to the Klein-Gordon equation for the study of time-domain waveguide fields and accompanying energetic processes," IET Microwaves, Antennas & Propag., Vol. 9, No. 12, 1337-1344, 2015.
doi:10.1049/iet-map.2014.0512

17. Erden, F., A. A. Cosan, and O. A. Tretyakov, "Properties of the time-domain waveguide modes," IEEE APS/URSI Meeting, Fajardo, PR, June 26–July 1, 2016.

18. Erden, F., "Study of the energetic field characteristics of the TE-modal waves in waveguides," Turkish Journal of Physics, Vol. 41, 47-54, 2017.
doi:10.3906/fiz-1605-1

19. Taylor, B. N., Special Publication 330, US National Institute of Standards and Technology (NIST), 2001.

20. Umov, N. A., "Ein Theorem ¨u ber die Wechselwirkung in endlichen Entfernungen," Z. Math. Phys., Vol. 19, 97-114, 1874.

21. Poynting, J. H., "On the transfer of energy in the electromagnetic field," Philos. Trans. R. Soc. Lond., Vol. 175, 343-361, 1884.
doi:10.1098/rstl.1884.0016

22. Einstein, A., "Zur elektrodynamik bewegter Körper," Annalen der Physik, Vol. 17, 891-921, 1905.
doi:10.1002/andp.19053221004

23. Rothwell, E. J. and M. J. Cloud, Electromagnetics, CRC Press, 2001.
doi:10.1201/9781420058260

24. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, Pergamon Press Ltd., 1971.