Vol. 69
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-31
A Virtual Space-Frequency Matrix Method for Joint DOA-Frequency Estimation
By
Progress In Electromagnetics Research M, Vol. 69, 61-68, 2018
Abstract
The joint direction-of-arrival (DOA) and frequency estimation problem has received significant attention recently in some applications, including pulsed Doppler radar, multipath parameter estimation, etc. This paper presents a novel virtual space-frequency matrix method to estimate the DOA and frequency jointly. Via the temporal smoothing technique, a virtual space-frequency matrix is defined, which includes the information of the incident DOAs and the frequencies. Making using of the proposed method, both the frequencies and DOAs can be estimated by eigenvalues and the corresponding eigenvectors of the new defined virtual space-frequency matrix, respectively. Therefore, the pairing of the estimated DOAs and frequencies is automatically determined. Compared with related works, the proposed method can provide superior performance, such as higher estimation accuracy, without the procedure of parameter search or parameter matching. Simulation results are presented to demonstrate the efficacy of the proposed approach.
Citation
Ruiyan Du Fulai Liu Qingping Zhou , "A Virtual Space-Frequency Matrix Method for Joint DOA-Frequency Estimation," Progress In Electromagnetics Research M, Vol. 69, 61-68, 2018.
doi:10.2528/PIERM18032902
http://www.jpier.org/PIERM/pier.php?paper=18032902
References

1. Wang, S., J. Caffery, and X. Zhou, "Analysis of a joint space-time DOA/FOA estimator using MUSIC," IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, B138-B142, 2001.

2. Lin, J. D., W. H. Fang, W. Y. Wang, and J. T. Chen, "FSF MUSIC for joint DOA and frequency estimation and its performance analysis," IEEE Transactions on Signal Processing, Vol. 54, No. 12, 4529-4542, 2006.
doi:10.1109/TSP.2006.882112

3. Lemma, A. N., A. J. Vanderveen, and A. Paulraj, "Joint angle-frequency estimation using multi- resolution ESPRIT," IEEE International Conference on Acoustics, Speech and Signal Processing --- Proceedings, Vol. 4, 1957-1960, 1998.

4. Lemma, A. N. and A. J. Van der veen, "Analysis of joint angle-frequency estimation using ESPRIT," IEEE Transactions on Signal Processing, Vol. 51, No. 5, 1264-1283, 2003.
doi:10.1109/TSP.2003.810306

5. Liu, F. L., J. K.Wang, and R. Y. Du, "Unitary-JAFE algorithm for joint angle-frequency estimation based on Frame-Newton method," Signal Processing, Vol. 3, No. 90, 809-820, 2010.
doi:10.1016/j.sigpro.2009.08.013

6. Lin, J. D., W. H. Fang, and K. H. Wu, "FSF subspace-based algorithm for joint DOA-FOA estimation," IEEE International Conference on Acoustics, Speech, and Signal Processing, ii-157-60, 2004.

7. Du, R. Y., J. K. Wang, and F. L. Liu, "Space-time matrix method for joint angle-frequency estimation," IEEE International Conference on Communication Technology Proceedings, 2008.

8. Wang, X. D., "Joint angle and frequency estimation using multiple-delay output based on ESPRIT," Eurasip Journal on Advances in Signal Processing, 2010.

9. Wang, X. D., X. F. Zhang, J. F. Li, and J. C. Bai, "Improved ESPRIT method for joint direction-of- arrival and frequency estimation using multiple-delay output," International Journal of Antennas and Propagation, Vol. 2012, No. 1, 1018-1020, 2012.

10. Sun, Z. W., J. F. Li, J. Liu, and X. F. Zhang, "ESPRIT-based joint angle and frequency estimation using multiple delay output," International Conference on Teaching and Computational Science, 2012.

11. Anil Kumar, A., S. G. Razul, C. M. Girish, C. M. See, and P. Balamuralidhar, "Joint frequency and direction of arrival estimation with space-time array," Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop, 2016.