1. Kumar, G., Broadband Microstrip Antennas, Artech House, Boston London, 2003, ISBN 1-58053-244-6.
2. Pozar, D. M., "Considerations for millimeter wave printed antennas," IEEE Transactions on Antennas and Propagation, Vol. 31, 740-747, 1983. Google Scholar
3. Viani, F., L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 993-1003, 2010. Google Scholar
4. Febvre, P. and M. Donelli, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012. Google Scholar
5. Nisenoff, M. and J. Pond, "Superconductors and microwaves," IEEE Microwave Magazine, Vol. 10, No. 3, 84-95, 2009. Google Scholar
6. Hansen, R. C., Electrically Small, Superdirective, and Superconducting Antennas, John Wiley & Sons, Inc, Hoboken, New Jersey, 2006.
7. Fortaki, T., M. Amir, S. Benkouda, and A. Benghalia, "Study of high Tc superconducting microstrip antenna," PIERS Online, Vol. 5, No. 4, 346-349, 2010. Google Scholar
8. Khamas, S. K., M. J. Mehler, T. S. M. Maclean, and C. E. Gough, "High-T/sub c/superconducting short dipole antenna," Electronics Letters, Vol. 24, No. 8, 460-461, 1988. Google Scholar
9. El-Ghazaly, S. M., R. B. Hammond, and T. Itoh, "Analysis of superconducting microwave structures: Application to microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 3, 499-508, 1992. Google Scholar
10. Benkouda, S., A. Messai, M. Amir, S. Bedra, and T. Fortaki, "Characteristics of a high Tc superconducting rectangular microstrip patch on uniaxially anisotropic substrate," Physica C: Superconductivity, Vol. 502, 70-75, July 2014. Google Scholar
11. Bedra, S. and T. Fortaki, "Effects of superstrate layer on the resonant characteristics of superconducting rectangular microstrip patch antenna," Progress In Electromagnetics Research C, Vol. 62, 157-165, 2016. Google Scholar
12. Bedra, S. and T. Fortaki, "High-Tc superconducting rectangular microstrip patch covered with a dielectric layer," Physica C: Superconductivity and Its Applications, Vol. 524, 31-36, May 2016. Google Scholar
13. Barkat, O., "Theoretical study of superconducting annular ring microstrip antenna with several dielectric layers," Progress In Electromagnetics Research, Vol. 127, 31-48, 2012. Google Scholar
14. Benmeddour, F., C. Dumond, F. Benabdelaziz, and F. Bouttout, "Improving the performances of a high Tc superconducting circular microstrip antenna with multilayered configuration and anisotropic dielectrics," Progress In Electromagnetics Research C, Vol. 18, 169-183, 2011. Google Scholar
15. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Efficient CAD model for the analysis of high Tc superconducting circular microstrip antenna on anisotropic substrates," Advanced Electromagnetics, Vol. 6, No. 2, May 2017. Google Scholar
16. Losada, V., R. R. Boix, and M. Horno, "Resonant modes of circular microstrip patches in multilayered substrates," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 4, 488-498, 1999. Google Scholar
17. Tulintsef, A. N., S. M. Ali, and J. A. Kong, "Input impedance of a probe-fed stacked circular microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 39, 381-390, Mar. 1991. Google Scholar
18. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Inc, 2001.
19. Fang, D. G., Antenna Theory and Microstrip Antennas, Taylor and Francis Group, 2010.
20. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials," Physica C: Superconductivity and Its Applications, Vol. 543, 1-7, December 2017. Google Scholar
21. Richard, M. A., K. B. Bhasin, and P. C. Claspy, "Superconducting microstrip antennas: An experimental comparison of two feeding methods," IEEE Transactions on Antennas and Propagation, Vol. 41, 967-974, 1993. Google Scholar