1. Meinel, H. H., "Evolving automotive radar - From the very beginnings into the future," Proc. EuCAP, 3107-3114, The Hague, Netherlands, 2014. Google Scholar
2. Patole, S., M. Torlak, D. Wang, and M. Ali, "Automotive radars: A review of signal processing techniques," IEEE Signal Proc. Mag., Vol. 34, No. 2, 22-35, Mar. 2017. Google Scholar
3. Felic, G. K., R. J. Evans, H. T. Duong, H. V. Le, J. Li, and E. Skafidas, "Single-chip millimeter wave radar," Microwave J., Vol. 58, 108-116, Jan. 2015. Google Scholar
4. Pettus, M., "RFID system utilizing parametric reflective technology,", U.S. Patent 7 460 016, Dec. 2, 2008. Google Scholar
5. Kofman, S., Y. Meerfeld, M. Sandler, S. Dukler, and V. Alchanatis, "Radio frequency identification system and data reading method,", U.S. Patent 20090014520A1, Jan. 15, 2009. Google Scholar
6. Pettus, M., "RFID system utilizing parametric reradiated technology,", U.S. Patent, 7 498 940, Mar. 3, 2009. Google Scholar
7. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing, John Wiley & Sons, 1991.
8. Carrara, W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar Signal Processing Algorithms, Artech House, 1995.
9. Chan, Y. K. and V. C. Koo, "An introduction to Synthetic Aperture Radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008. Google Scholar
10. Zomorrodi, M. and N. C. Karmakar, "Optimized MIMO-SAR technique for fast EM-Imaging of chipless RFID system," IEEE Trans. Microw. Theory Techn., Vol. 60, No. 7, 2142-2151, Jul. 2012. Google Scholar
11. Soumekh, M., "Reconnaissance with slant plane circular SAR imaging," IEEE Trans. Image Process., Vol. 5, No. 8, 1252-1265, Aug. 1996. Google Scholar
12. Musgrove, C., "Synthetic aperture radar speckle reduction for circle mode SAR images," Proc. SPIE 9829, Radar Sensor Technology XX, May 2016. Google Scholar
13. Ishimaru, A., T. Chan, and Y. Kuga, "An imaging technique using confocal circular synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 5, 1524-1530, Sep. 1998. Google Scholar
14. Devaney, A. J., "Time reversal imaging of obscured targets from multistatic data," IEEE Trans. Antennas Propag., Vol. 53, No. 5, 1600-1610, May 2005. Google Scholar
15. Therrien, C. W., Discrete Random Signals and Statistical Signal Processing, Prentice Hall, 1992.
16. Stoica, P. and R. Moses, Introduction to Spectral Analysis, Prentice Hall, 1997.
17. Ciuonzo, D., G. Romano, and R. Solimenne, "Performance analysis of time-reversal MUSIC," IEEE Trans. Signal Process., Vol. 63, No. 10, 2650-2662, May 2015. Google Scholar
18. Ciuonzo, D., "On time-reversal imaging by statistical testing," IEEE Sig. Proc. Lett., Vol. 24, No. 7, 1024-1028, Jul. 2017. Google Scholar
19. Ciuonzo, P. and P. S. Rossi, "Noncolocated time-reversal MUSIC: High-SNR distribution of null spectrum," IEEE Signal Process. Lett., Vol. 24, No. 4, 397-401, Apr. 2017. Google Scholar
20. Marengo, E. A., F. K. Gruber, and F. Simonetti, "Time-reversal MUSIC imaging of extended targets," IEEE Trans. Image Process., Vol. 16, No. 8, 1967-1984, Aug. 2007. Google Scholar
21. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.
22. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, May 1982. Google Scholar
23. Wilton, D. R., S. M. Rao, and A. W. Glisson, "Electromagnetic scattering by arbitrary surfaces,", Tech. Rep. RADC-TR-79-325, Rome Air Development Center, Griffiss AFB, NY, Mar. 1980. Google Scholar
24. Davidson, D., Computational Electromagnetics for RF and Microwave Engineering, Cambridge U. Press, 2005.
25. Twersky, V., "Multiple scattering of electromagnetic waves by arbitrary configurations," J. of Mathematical Physics, Vol. 8, No. 3, 589-610, Mar. 1967. Google Scholar
26. "Method of moments solver for metal structures,", [Online], Available: https://www.mathworks.com/help/antenna/ug/method-of-moments.html. Google Scholar
27. Stankwitz, H. C., R. J. Dallaire, and J. R. Fienup, "Spatially variant apodization for sidelobe control in SAR imagery," Proc. 1994 IEEE National Radar Conf., Mar. 1994. Google Scholar
28. Stankwitz, H. C., R. J. Dallaire, and J. R. Fienup, "Nonlinear apodization for sidelobe control in SAR imagery," IEEE Trans. Aerosp. Electron. Syst., Vol. 31, No. 1, 267-279, Jan. 1995. Google Scholar
29. Stankwitz, H. C. and M. R. Kosek, "Sparse aperture fill for SAR using super-SVA," Proc. 1996 IEEE National Radar Conf., May 1996. Google Scholar
30. DeGraaf, S. R., "Sidelobe reduction via adaptive FIR filtering in SAR imagery," IEEE Trans. Image Process., Vol. 3, No. 3, 292-301, May 1994. Google Scholar
31. Högbom, J., "Aperture synthesis with a non-regular distribution of interferometer baselines," Astrophys. J. Suppl. Ser., Vol. 15, 417-426, 1974. Google Scholar
32. Lannes, A., E. Anterrieu, and P. Marechal, "CLEAN and WIPE," Astron. Astrophys. Suppl. Ser., Vol. 123, 183-198, May 1997. Google Scholar
33. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal MUSIC method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010. Google Scholar
34. Gruber, F. K., E. A. Marengo, and A. J. Devaney, "Time-reversal imaging with multiple signal classification considering multiple scattering between the targets," J. Acoust. Soc. Am., Vol. 115, No. 6, 3042-3047, Jun. 2004. Google Scholar