Vol. 77
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-11
Precise Analysis on Paraxial Region Magnetic Field of Solenoid with Relaxation Polarization Medium
By
Progress In Electromagnetics Research M, Vol. 77, 177-186, 2019
Abstract
This paper studies distribution characteristics of paraxial magnetic field of solenoid with inner relaxation polarization medium and driven by ac signal. Firstly, the paraxial electromagnetic field model of hollow solenoid was constructed by Maxwell equations, and the influence of the driving signal frequency was analyzed. Then, based on the established paraxial electromagnetic field model of hollow solenoid, the magnetic field model of solenoid with inner relaxation polarization medium was established by ampere loop law. Finally, the effects of relaxation polarization medium and driving signal frequency on magnetic field amplitude and phase shift were analyzed in detail. The conclusions were drawn as follows: driving signal frequency affects magnetic field amplitude; the relaxation polarization medium will cause the phase shift of magnetic field; and the phase shift will increase as the driving signal frequency increases.
Citation
Zhiyong Yang, Wei Cai, Zhili Zhang, and Youan Xu, "Precise Analysis on Paraxial Region Magnetic Field of Solenoid with Relaxation Polarization Medium," Progress In Electromagnetics Research M, Vol. 77, 177-186, 2019.
doi:10.2528/PIERM18101606
References

1. Wang, Z. G., X. W. Long, and F. Wang, "Zero drift sensitivity in four-frequency differential laser gyros," Infrared and Laser Engineering, Vol. 40, 1758-1762, Sep. 2011.

2. Shang, H. N., W. Quan, Y. Chen, Y. Li, and H. Li, "The measuring method of atomic polarization of alkali metal vapor based on optical rotation and the analysis of the influence factors," Spectroscopy and Spectral Analysis, Vol. 36, 305-309, Feb. 2016.

3. Peng, L., Z. H. Yang, Q. Hu, T. Huang, and B. Li, "Finite element computation of 2-D magnetic field of solenoid with current," High Power Laser and Particle Beams, Vol. 23, 2151-2156, Aug. 2011.
doi:10.3788/HPLPB20112308.2151

4. Cai, W., F. C. Wu, Z. Y. Yang, Y. G. Hou, and J. H. Xing, "Analysis of solenoid magnetic field based on Maxwell equation," High Power Laser and Particle Beams, Vol. 27, 123201, Dec. 2015.

5. Cai, W., F. C. Wu, and Z. Y. Yang, "Magnetic field of long solenoid driven by square wave," Laser & Optoelectronics Progress, Vol. 52, 092601, Sep. 2015.
doi:10.3788/LOP52.092601

6. Liang, M. L. and K. Xue, "Calculation of the magnetic field of the finite solenoid with a rectangular cross section," Physics and Engineering, Vol. 28, 57-61, Jan. 2018.

7. Liao, B., C. F. Deng, X. Y. Wu, X. Zhang, A. D. Liu, and H. Liang, "Inner magnetic field distribution of solenoid studied by matlab," Journal of Beijing Normal University (Natural Science), Vol. 46, 688-690, Jun. 2010.

8. Fang, Y. Z., Q. M. Xu, J. J. Zheng, B. H. Lv, R. M. Pan, H. Q. Ye, et al. "Investigation on the relation between tne length of magnetic core and the giant magnetoimpedance effect of solenoid with FeCo-based magnetic core," Acta Phys. Sin., Vol. 60, 127501, Dec. 2011.

9. Li, K. and W. Q. Liu, "Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles," Acta Phys. Sin., Vol. 65, 064701, Jun. 2016.

10. Ji, F., S. J. Du, X. G. Liu, and Z. L. Wang, "Magnetic field and electromagnetic load calculation for CFETR central solenoid model coil," Journal of Hefei University of Technology, Vol. 38, 788-792, Jun. 2015.

11. Lü, L., "Improvement of precision for linear inductance micrometer," Optics and Precision Engineering, Vol. 23, 191-196, Jan. 2015.
doi:10.3788/OPE.20152301.0191

12. Zhu, Y. W., H. T. Li, Z. M. Yan, L. Fu, and Y. Wang, "Design and analysis for magnetic field configuration of electromagnetic coil launcher," Acta Armamentarii, Vol. 32, 464-468, Apr. 2011.

13. Zhao, L. X., M. B. Lü, X. Zhang, H. Y. Yu, Q. G. Yao, G. Q. Liu, et al. "Numerical analysis and experimental study of the magnetic lifting device prototype," High Power Laser and Particle Beams, Vol. 27, 076003, Jul. 2015.
doi:10.3788/HPLPB20152707.76003

14. Wu, W., Z. J. Wang, B. M. Wu, S. F. Han, D. S. Ni, E. M. Mei, et al. "Development of a surperconducting solenoid for CADS," Chinese Physics C, Vol. 38, 017003, Jan. 2014.
doi:10.1088/1674-1137/38/1/017003

15. Li, P., Y. Z. Liu, and J. L. Wang, "Port magnetic flux leakage suppression technology for static magnetic system of nuclear magnetic resonance gyroscope," Journal of Chinese Inertial Technology, Vol. 26, 56-62, Jan. 2018.

16. Gerald, S. H., "The high-frequency electric and magnetic fields of a solenoid," Journal of Applied Physics, Vol. 69, 7400-7405, Nov. 1991.