1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Shalaev, V. M., W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Optics Letters, Vol. 30, No. 24, 3356-3358, 2005.
doi:10.1364/OL.30.003356 Google Scholar
3. Zhang, W., J.-Y. Li, and J. Xie, "High sensitivity refractive index sensor based on metamaterial absorber," Progress In Electromagnetics Research M, Vol. 71, 107-115, 2018.
doi:10.2528/PIERM18042903 Google Scholar
4. Liu, Y., Y. Chen, J. Li, T. C. Hung, and J. Li, "Study of energy absorption on solar cell using metamaterials," Solar Energy, Vol. 86, No. 5, 1586-1599, 2012.
doi:10.1016/j.solener.2012.02.021 Google Scholar
5. Rufangura, P. and C. Sabah, "Perfect metamaterial absorber for applications in sustainable and high-efficiency solar cells," Journal of Nanophotonics, Vol. 12, No. 2, 26002, 2018.
doi:10.1117/1.JNP.12.026002 Google Scholar
6. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Letters, Vol. 58, No. 1, 71-75, 2016.
doi:10.1002/mop.29494 Google Scholar
7. Mishra, P. and S. S. Pattnaik, "Metamaterial loaded fractal based interdigital capacitor antenna for communication systems," Progress In Electromagnetics Research M, Vol. 70, 127-134, 2018. Google Scholar
8. Chen, H., B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nature Communications, Vol. 4, 2652, 2013.
doi:10.1038/ncomms3652 Google Scholar
9. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907 Google Scholar
10. Lee, S. H., M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, and X. Zhang, "Switching terahertz waves with gate-controlled active graphene metamaterials," Nature Materials, Vol. 11, No. 1, 936, 2012.
doi:10.1038/nmat3433 Google Scholar
11. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, No. 19, 10927-10940, 2014.
doi:10.1039/C4NR03143A Google Scholar
12. Mitrofanov, O., L. Viti, E. Dardanis, M. C. Giordano, D. Ercolani, A. Politano, and M. S. Vitiello, "Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging," Scientific Reports, Vol. 7, 44240, 2017.
doi:10.1038/srep44240 Google Scholar
13. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics, and photonics with topological insulators," APL Materials, Vol. 5, No. 3, 035504, 2017.
doi:10.1063/1.4977782 Google Scholar
14. Yang, Q., J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, and W. Zhang, "Efficient flat metasurface lens for terahertz imaging," Optics Express, Vol. 22, No. 21, 25931-25939, 2014.
doi:10.1364/OE.22.025931 Google Scholar
15. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 10, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
16. Yang, C., H. Xiong, and X. P. Li, "Investigation of a metamaterial absorber by using reflection theory model," Progress In Electromagnetics Research M, Vol. 59, 65-73, 2017. Google Scholar
17. Ramya, S. and I. Srinivasa Rao, "Design of polarization-insensitive dual band metamaterial absorber," Progress In Electromagnetics Research M, Vol. 50, 23-31, 2016.
doi:10.2528/PIERM16070501 Google Scholar
18. Smith, D. R., W. J. Padilla, and D. C. Vier, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 10, 4184-4187, 2016. Google Scholar
19. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
20. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Member Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
21. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incident terahertz metamaterial absorber: Design, fabrication, and characterization," Physical Review B, Vol. 78, No. 24, 2008.
doi:10.1103/PhysRevB.78.241103 Google Scholar
22. Ayop, O., M. K. A. Rahim, and N. A. Murad, "Polarization-independent metamaterial absorber for single band and multi-band frequency," Jurnal Teknologi, Vol. 77, No. 10, 99-106, 2015. Google Scholar
23. Bagci, F. and F. Medina, "Design of a wide-angle, polarization insensitive, dual-band metamaterial-inspired absorber with the aid ofequivalent circuit model," Journal of Computational Electronics, Vol. 16, No. 3, 913-921, 2017.
doi:10.1007/s10825-017-1009-4 Google Scholar
24. Ayop, O. B., M. K. Abd Rahim, N. A. Murad, N. A. Samsuri, and R. Dewan, "Triple band circular ring-shaped metamaterial absorber for x-band applications," Progress In Electromagnetics Research M, Vol. 39, 65-75, 2014.
doi:10.2528/PIERM14052402 Google Scholar
25. Zhai, H., C. Zhan, Z. Li, and C. Liang, "A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability," IEEE Antennas and Wireless Propagation Letters, 241-244, 2015.
doi:10.1109/LAWP.2014.2361011 Google Scholar
26. Bian, B., S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, "Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber," Journal of Applied Physics, Vol. 114, No. 10, 194511, 2013.
doi:10.1063/1.4832785 Google Scholar
27. Ling, X., Z. Xiao, X. Zheng, J. Tang, and K. Xu, "Ultra-broadband metamaterial absorber based on the structure of resistive films," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 17, 2325-2333, 2017.
doi:10.1080/09205071.2016.1246211 Google Scholar
28. Shen, G., M. Zhang, Y. Ji, W. Huang, H. Yu, and J. Shi, "Broadband terahertz metamaterial absorber based on simple multi-ring structures," AIP Advances, Vol. 8, No. 7, 075206, 2018.
doi:10.1063/1.5024606 Google Scholar
29. Agrawal, A., M. Misra, and A. Singh, "Oblique incidence and polarization insensitive multiband metamaterial absorber with quad paired concentric continuous ring resonators," Progress In Electromagnetics Research M, Vol. 60, 33-46, 2017.
doi:10.2528/PIERM17061302 Google Scholar
30. Lu, L., S. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, "A polarization-independent wide-angle dual directional absorption metamaterial absorber," Progress In Electromagnetics Research M, Vol. 27, 91-201, 2012.
doi:10.2528/PIERM12102101 Google Scholar
31. Agarwal, M., A. K. Behera, and M. K. Meshram, "Wide-angle quad-band polarisation-insensitive metamaterial absorber," Electronics Letters, Vol. 52, No. 5, 340-342, 2016.
doi:10.1049/el.2015.4134 Google Scholar
32. Sood, D. and C. C. Tripathi, "A wideband wide-angle ultra-thin metamaterial microwave absorber," Progress In Electromagnetics Research M, Vol. 44, 39-46, 2015.
doi:10.2528/PIERM15082903 Google Scholar
33. Panaretos, A. H., D. E. Brocker, and D. H. Werner, "Ultra-thin absorbers comprised by cascaded high-impedance and frequency selective surfaces," IEEE Antennas Wireless Propagation Letters, Vol. 14, 1089-1092, 2015.
doi:10.1109/LAWP.2015.2390145 Google Scholar
34. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Bandwidth-enhancement of an ultrathin polarization insensitive metamaterial absorber," Microwave and Optical Technology Letters, Vol. 56, No. 2, 350-355, 2013.
doi:10.1002/mop.28122 Google Scholar
35. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
doi:10.2528/PIER10122401 Google Scholar
36. Smith, D. R., D. C. Vier, T. Koschny, C. M., and Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617 Google Scholar
37. Liu, J., Q. Zhou, Y. Shi, X. Zhao, and C. Zhang, "Study of L-shaped resonators at terahertz frequencies," Applied Physics Letters, Vol. 103, No. 24, 241911, 2013.
doi:10.1063/1.4847295 Google Scholar