1. Choi, J.-Y., M.-S. Hur, Y.-W. Suh, J.-S. Baek, Y.-T. Lee, and J.-S. Seo, "Interference cancellation techniques for digital on-channel repeaters in T-DMB system," IEEE Trans. Broadcast., Vol. 57, No. 1, 46-56, 2011.
doi:10.1109/TBC.2010.2094314 Google Scholar
2. Yang, X., W. Lu, N. Wang, K. Nieman, C.-K. Wen, C. Zhang, S. Jin, X. Mu, I. Wong, Y. Huang, and X. You, "Design and implementation of a TDD-based 128-antenna massive MIMO prototype system," China Communications, Vol. 14, No. 12, 162-187, 2017.
doi:10.1109/CC.2017.8246333 Google Scholar
3. Yang, Z., X. Zhang, X. Teng, Z. Zhang, S. Li, and Y. Wang, "A novel low profile box-shaped antenna for a repeater system," Proc. 2012 the 10th Int’l Symp. Antennas Propag. and EM Theory (ISAPE), 93-96, Xi'an, China, 2012.
doi:10.1109/ISAPE.2012.6408716 Google Scholar
4. Komaki, K. and H. Iwasaki, "Back to back patch antenna operated orthogonal polarization for repeater use," Proc. 2015 Int’l Symp. Antennas Propag. (ISAP), 1-2, Tasmania, Australia, 2015. Google Scholar
5. Duan, Z., L.-J. Xu, and W. Geyi, "Metal frame repeater antenna with partial slotted ground for bandwidth enhancement of wristband devices," IET Microw. Antennas Propag., Vol. 11, No. 10, 1438-1444, 2017.
doi:10.1049/iet-map.2016.1000 Google Scholar
6. Lee, Y., J. Ha, and J. Choi, "Design of a wideband indoor repeater antenna with high isolation for 3G systems," IEEE Antennas Wireless Propag. Lett., Vol. 9, 697-700, 2010.
doi:10.1109/LAWP.2010.2057236 Google Scholar
7. Sarabandi, K. and Y. J. Song, "Subwavelength radio repeater system utilizing miniaturized antennas and metamaterial channel isolator," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2683-2690, 2011.
doi:10.1109/TAP.2011.2152320 Google Scholar
8. Song, Y. J. and K. Sarabandi, "Miniaturized radio repeater for enhanced wireless connectivity of Ad-Hoc networks," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3913-3920, 2012.
doi:10.1109/TAP.2012.2201124 Google Scholar
9. Lee, Y., J. Ha, and J. Choi, "Design of an indoor repeater antenna with high isolation using metamaterials," Microwave and Optical Tech. Lett., Vol. 54, No. 3, 755-761, 2012.
doi:10.1002/mop.26651 Google Scholar
10. Ko, J.-H., G.-K. Kim, S.-Y. Rhee, and J.-I. Lee, "800 MHz band dual-fed ICS repeater antenna with high isolation," Journal Korea Inst. Inf. Commun. Eng. (Korean Edition), Vol. 20, No. 5, 867-873, 2016.
doi:10.6109/jkiice.2016.20.5.867 Google Scholar
11. Safaai-jazi, A. and W. L. Stutzman, "A new low sidelobe pattern synthesis technique for equally spaced linear arrays," IEEE Trans. Antennas and Propag., Vol. 64, No. 4, 1317-1324, 2016.
doi:10.1109/TAP.2016.2526084 Google Scholar
12. Cesar, C. G., I. Santamaria, J. Via, E. M. Gomez, and T. S. Paules, "Robust array beamforming with sidelobe control using support vector machines," IEEE Trans. Signal Process., Vol. 55, No. 2, 574-584, 2007.
doi:10.1109/TSP.2006.885720 Google Scholar
13. Mikunide, A. and M. Fujimoto, "Specific area communication system using binomial coefficient array," Proc. 2017 Int’l Symp. Antennas Propag. (ISAP), 1-2, Phuket, Thailand, 2017. Google Scholar
14. Phyoe, T. P., E. Nishiyama, and I. Toyoda, "A 5-8-GHz dual-axis monopulse microstrip array antenna using dual-feed network," Proc. 2018 Asia-Pacific Microw. Conf. (APMC), 1549-1551, Kyoto, Japan, 2018. Google Scholar
15. Phyoe, T. P., E. Nishiyama, and I. Toyoda, "A circularly polarized dual-axis wide-angle rectenna employing a dual-feed array antenna with inclined patches," Progress In Electromagnetics Research M, Vol. 77, 135-145, 2019.
doi:10.2528/PIERM18100505 Google Scholar