1. Valsecchi, C. and A. G. Brolo, "Periodic metallic nanostructures as plasmonic chemical sensors," Langmuir, Vol. 29, No. 19, 5638-5649, 2013.
doi:10.1021/la400085r Google Scholar
2. Chung, T., S. Y. Lee, E. Y. Song, H. Chun, and B. Lee, "Plasmonic nanostructures for nano-scale bio-sensing," Sensors, Vol. 11, No. 11, 10907-10929, 2011.
doi:10.3390/s111110907 Google Scholar
3. Špačková, B., P. Wrobel, M. Bocková, and J. Homola, "Optical biosensors based on plasmonic nanostructures: A review," Proc. IEEE, Vol. 104, No. 12, 2380-2408, 2016.
doi:10.1109/JPROC.2016.2624340 Google Scholar
4. Arora, P. and A. Krishnan, "Imaging the engineered polarization states of surface plasmon polaritons at visible wavelengths," J. Light. Technol., Vol. 32, No. 24, 4816-4822, 2014.
doi:10.1109/JLT.2014.2366053 Google Scholar
5. Roh, S., T. Chung, and B. Lee, "Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors," Sensors, Vol. 11, No. 2, 1565-1588, 2011.
doi:10.3390/s110201565 Google Scholar
6. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sensors Actuators B Chem., Vol. 54, 3-15, 1999.
doi:10.1016/S0925-4005(98)00321-9 Google Scholar
7. Stewart, M. E., C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, "Nanostructured plasmonic sensors," Chem. Rev., Vol. 108, No. 2, 494-521, 2008.
doi:10.1021/cr068126n Google Scholar
8. González-Campuzano, R., J. M. Saniger, and D. Mendoza, "Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few-layer graphene within the UV-IR spectral range," Nanotechnology, Vol. 28, No. 465704, 1-9, 2017. Google Scholar
9. Lecarme, O., Q. Sun, K. Ueno, and H. Misawa, "Robust and versatile light absorption at near-infrared wavelengths by plasmonic aluminum nanorods," ACS Photonics, Vol. 1, No. 6, 538-546, 2014.
doi:10.1021/ph500096q Google Scholar
10. Su, W., G. Zheng, and X. Li, "Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction gratings," Opt. Commun., Vol. 285, 4603-4607, 2012.
doi:10.1016/j.optcom.2012.07.026 Google Scholar
11. Martin, J. and J. Plain, "Fabrication of aluminum nanostructures for plasmonics," J. Phys. D. Appl. Phys., Vol. 48, No. 184002, 1-17, 2015. Google Scholar
12. Li, W., Y. Qiu, L. Zhang, L. Jiang, Z. Zhou, H. Chen, and J. Zhou, "Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199," Biosens. Bioelectron., Vol. 79, 500-507, 2016.
doi:10.1016/j.bios.2015.12.038 Google Scholar
13. Chowdhury, M. H., K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, "Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules," Anal. Chem., Vol. 81, No. 4, 1397-1403, 2009.
doi:10.1021/ac802118s Google Scholar
14. Zhang, X., J. Zhao, A. V. Whitney, J. W. Elam, and R. P. Van Duyne, "Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection," J. Am. Chem. Soc., Vol. 128, No. 31, 10304-10309, 2006.
doi:10.1021/ja0638760 Google Scholar
15. Tong, J., F. Suo, J. Ma, L. Y. M. Tobing, L. Qian, and D. H. Zhang, "Surface plasmon enhanced infrared photodetection," Optoelectron. Adv., Vol. 2, No. 1, 1-10, 2019. Google Scholar
16. Lu, H., X. Liu, D. Mao, and G. Wang, "Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators," Opt. Lett., Vol. 37, No. 18, 3780-3782, 2012.
doi:10.1364/OL.37.003780 Google Scholar
17. Lu, H., S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, "Sb2Te03 topological insulator: Surface plasmon resonance and application in refractive index monitoring," Nanoscale, 2019. Google Scholar
18. Lu, H., Y. Fan, S. Dai, and D. Mao, "Coupling-induced spectral splitting for plasmonic sensing with the ultra-high figure of merit," Chinese Phys. B, Vol. 27, No. 11, 117302, 2018.
doi:10.1088/1674-1056/27/11/117302 Google Scholar
19. Moharam, M. G., E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A, Vol. 12, No. 5, 1068-1076, 1995.
doi:10.1364/JOSAA.12.001068 Google Scholar
20. Arora, P. and A. Krishnan, "Fourier plane colorimetric sensing using broadband imaging of surface plasmons and application to biosensing," J. Appl. Phys., Vol. 118, No. 23, 2015.
doi:10.1063/1.4937567 Google Scholar
21. Lee, K. L., C. C. Chang, M. L. You, M. Y. Pan, and P. K. Wei, "Enhancing surface sensing sensitivity of metallic nanostructures using blue-shifted surface plasmon mode and fano resonance," Sci. Rep., Vol. 8, No. 1, 1-12, 2018.
doi:10.1038/s41598-017-17765-5 Google Scholar
22. Arora, P. and A. Krishnan, "On-chip label-free plasmonic-based imaging microscopy for microfluidics," J. Phys. Commun., Vol. 2, No. 085012, 1-9, 2018. Google Scholar
23. Sun, X., X. Shu, and C. Chen, "Grating surface plasmon resonance sensor: Angular sensitivity, metal oxidization effect of Al-based device in optimal structure," Appl. Opt., Vol. 54, No. 6, 1548-1554, 2015.
doi:10.1364/AO.54.001548 Google Scholar
24. Jha, R. and A. K. Sharma, "High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared," Opt. Lett., Vol. 34, No. 6, 749-751, 2009.
doi:10.1364/OL.34.000749 Google Scholar
25. Arora, P. and A. Krishnan, "Analysis of transmission characteristics and multiple resonances in plasmonic gratings coated with homogeneous dielectrics," Progress In Electromagnetics Research Symposium Proceedings, 927-931, Taipei, March 25–28, 2013. Google Scholar
26. Frisbie, S. P., A. Krishnan, X. Xu, L. G. de Peralta, S. A. Nikishin, M.W. Holtz, and A. A. Bernussi, "Optical reflectivity of asymmetric dielectric-metal-dielectric planar structures," J. Light. Technol., Vol. 27, No. 15, 2964-2969, 2009.
doi:10.1109/JLT.2008.2009886 Google Scholar