Vol. 81
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-05-01
Embedded Resonances for Discrimination of Multiple Passive Nonlinear Targets Applicable to DORT
By
Progress In Electromagnetics Research M, Vol. 81, 31-42, 2019
Abstract
This paper presents a method to distinguish multiple passive nonlinear targets, which can be applied to detection and selective wave focusing based on the decomposition of the time-reversal operator (DORT). A recent demonstration of DORT applied to harmonic scattering has shown that passive nonlinear targets (scatterers) can be detected in the presence of linear scatterers and separated into discrete eigenvalues. While DORT is effective in detecting multiple nonlinear targets, it could be difficult to discriminate these nonlinear scatters as their harmonic responses would look similar to each other. Our proposed approach to overcoming this difficulty is based on simply embedding a unique resonant notch in the second harmonic band for each nonlinear scatter, so as to make the notch appear in the associated eigenvalue, permitting identification and discrimination of the scatterer. We numerically demonstrate the basic feasibility of the proposed idea by considering various configurations in a two-dimensional model. The results show that a uniquely embedded resonant notch in a nonlinear target consistently appears in the corresponding eigenvalue of the time reversal operator, allowing it to be a reliable identifying feature. Further investigation into this technique holds promise towards smart wireless power transfer, biomedical, and IoT applications.
Citation
Sun K. Hong Hong Soo Park , "Embedded Resonances for Discrimination of Multiple Passive Nonlinear Targets Applicable to DORT," Progress In Electromagnetics Research M, Vol. 81, 31-42, 2019.
doi:10.2528/PIERM19021703
http://www.jpier.org/PIERM/pier.php?paper=19021703
References

1. Fink, M., "Time reversed acoustics," Physics Today, Vol. 50, No. 3, 34-40, 1997.
doi:10.1063/1.881692

2. Prada, C., S. Manneville, D. Spoliansky, and M. Fink, "Decomposition of the time reversal operator: Detection and selective focusing on two scatterers," Journal of Acoustical Society of America, Vol. 99, No. 4, 2067-2076, 1996.
doi:10.1121/1.415393

3. Micolau, G. and M. Saillard, "DORT method as applied to electromagnetic subsurface sensing," Radio Science, Vol. 38, No. 3, 1038-1049, 2003.
doi:10.1029/2000RS002590

4. Micolau, G., M. Saillard, and P. Borderies, "DORT method as applied to ultrawideband signals for detection of buried objects," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 8, 1813-1820, 2003.
doi:10.1109/TGRS.2003.814139

5. Yavus, M. E. and F. L. Teixeira, "Full time-domain DORT for ultrawideband electromagnetic fields in dispersive, random inhomogeneous media," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2305-2315, 2006.
doi:10.1109/TAP.2006.879196

6. Yavuz, M. E. and F. L. Teixeira, "Ultrawideband microwave sensing and imaging using time-reversal techniques: A review," Remote Sensing, Vol. 9, 466-495, 2009.
doi:10.3390/rs1030466

7. Bellomo, L., S. Pioch, M. Saillard, and E. Spano, "Time reversal experiments in the microwave range: Description of the radar and results," Progress In Electromagnetics Research, Vol. 104, 427-448, 2010.
doi:10.2528/PIER10030102

8. Kafal, M., A. Cozza, and L. Pichon, "Locating multiple soft faults in wire networks using alternative DORT implementation," IEEE Transactions on Instrumentation and Measurements, Vol. 65, No. 2, 399-406, 2015.
doi:10.1109/TIM.2015.2498559

9. Hong, S. K., "Effects of target resonances on UWB DORT," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 13, 1710-1732, 2018.
doi:10.1080/09205071.2018.1467284

10. Faia, J. M., K. W. McClintick, and S. K. Hong, "Application of DORT and pulse inversion to detection and selective electromagnetic focusing on nonlinear elements," 32nd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, Canada, Aug. 2017.

11. Faia, J. M., Y. He, H. S. Park, E. Wheeler, and S. K. Hong, "Detection and location of nonlinear scatterers using DORT applied with pulse inversion," Progress In Electromagnetics Research Letters, Vol. 80, 101-108, 2018.
doi:10.2528/PIERL18092605

12. Riley, J., A. Smith, D. Reynolds, A. Edwards, J. Osborne, I. Williams, N. Carreck, and G. Poppy, "Tracking bees with harmonic radar," Nature, Vol. 379, 29-30, Jan. 1996.
doi:10.1038/379029b0

13. Colpitts, B. and G. Boiteau, "Harmonic radar transceiver design: Miniature tags for insect tracking," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2825-2832, Nov. 2004.
doi:10.1109/TAP.2004.835166

14. Mazzaro, G., K. A. Gallagher, A. R. Owens, K. D. Sherbondy, and R. M. Narayanan, "Ultrawideband harmonic radar for locating radio-frequency electronics," ARL Technical Report, ARL-TR-7256, Mar. 2015.

15. Mazzaro, G. J., A. F. Martone, K. I. Ranney, and R. M. Narayanan, "Nonlinear radar for finding RF electronics: System design and recent advancements," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 5, 1716-1726, May 2017.
doi:10.1109/TMTT.2016.2640953

16. Huang, H., P.-Y. Chen, C.-H. Hung, R. Gharpurey, and D. Akinwande, "A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring," Scientific Reports, Vol. 6, No. 18795, 1-4, Jan. 2016.

17. Singh, A. and V. Lubecke, "Respiratory monitoring and clutter rejection using a CW Doppler radar with passive RF tags," IEEE Sensors, Vol. 12, No. 3, 558-565, Mar. 2012.
doi:10.1109/JSEN.2011.2134083

18. Hong, S. K., V. M. Mendez, T. Koch, W. S. Wall, and S. M. Anlage, "Nonlinear electromagnetic time-reversal in an open semireverberant system," Physical Review Applied, Vol. 2, No. 044013, 2014.

19. Pulfrey, D. L., Understanding Modern Transistors and Diodes, Cambridge University Press, Cambridge, UK, 2010.
doi:10.1017/CBO9780511840685

20. Vazques-Leal, H., U. Filobello-Nino, A. Yildirim, L. Hernandez-Martinez, R. Castaneda-Sheissa, J. Sanchez-Orea, J. E. Molinar-Slois, and A. Diaz-Sanchez, "Transient and DC approximate expressions for diode circuits," IEICE Electronics Express, Vol. 9, No. 6, 522-530, 2012.
doi:10.1587/elex.9.522

21. Si, L.-M., Q.-L. Zhang, W.-D. Hu, W.-H. Yu, Y.-M. Wu, X. Lv, and W. Zhu, "A uniplanar triple-band dipole antenna using complementary capacitively loaded loop," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 743-746, 2015.
doi:10.1109/LAWP.2015.2396907

22. Sarkar, D., K. V. Srivastava, and K. Saurav, "A compact microstrip-fed triple band-notched UWB monopole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 396-399, 2014.
doi:10.1109/LAWP.2014.2306812

23. Alshamaileh, K. A., M. J. Almalkawi, and V. K. Devabhaktuni, "Dual band-notched microstrip-fed Vivaldi antenna utilizing compact EBG structures," International Journal of Antennas and Propagation, Vol. 2015, 2015.

24. SEMCAD X, EM simulation platform, available from: https://speag.swiss/products/semcad/solutions.